The SNO+ Experiment overview, current status and prospects

Serena Riccetto Queen's University on behalf of the SNO+ collaboration

Snolab Summer User Meeting 2021

The SNO+ Experiment

Multi-purpose neutrino detector located at SNOLAB in Sudbury

- Ultra-pure water shielding
 7kt in total
- PMT support structure
 ~9400 PMTs (54% coverage)
 18m diameter
- Hold-up and hold-down rope systems
- Acrylic Vessel
 12m diameter
- Target medium inside the AV

The SNO+ Experiment

Multi-purpose neutrino detector located at SNOLAB in Sudbury

Each SNO+ phase defined by different target medium inside the AV and physics goals

The SNO+ Experiment

Multi-purpose neutrino detector located at SNOLAB in Sudbury

Each SNO+ phase defined by different target medium inside the AV and physics goals

*due to Covid-19 Pandemic

SNO+ Water Phase

- Data taking since May 2017 phase concluded in July 2019
- 900 tonnes of ultra-pure water
- Detector calibration

deployed and in-situ sources to calibrate PMTs, measure timing and optical properties, calibrate reconstructed energy, position and direction

 Background measurements internal and external
 ²³⁸U,²³²Th,¹⁴C,²¹⁰BiPo,³⁹Ar,⁸⁵Kr,⁴⁰K,(α,n)

-Adil's talk "Evaluating SNO+ External Background through Radon Assays"

SNO+ Water Phase

- Data taking since May 2017 phase concluded in July 2019
- 900 tonnes of ultra-pure water
- **Detector calibration**
- **Background measurements**
- **Physics results:**
 - ➢ ⁸B solar neutrinos flux Phys. Rev. D 99, 012012 (2019)
 - Invisible modes of nucleon decay Phys. Rev. D 99, 032008 (2019)
 - Neutron-proton capture Phys. Rev. C 102, 014002 (2020)

SNO+ Partial-Fill Phase

2019-07-24

- Fill started in 2019, paused in March 2020. Stable partial-fill data taking until October 2020
- Linear Alkylbenzene (LAB)
 + Diphenyloxazole (PPO) 365 tonnes of LAB + 0.5g/L PPO during stable partial-fill period via multi-stage distillation

2020-04-28

SNO+ liquid scintillator JINST 16 P05009 (2021) 2020-01-31

SNO+ Partial-Fill Phase

Units

- Fill started in 2019, paused in March 2020. Stable partial-fill data taking until October 2020
- Linear Alkylbenzene (LAB) + Diphenyloxazole (PPO) -365 tonnes of LAB + 0.5g/L PPO during stable partial-fill period
 - SNO+ liquid scintillator JINST 16 P05009 (2021)
- **Detector calibration**
- **Background measurements**

-Jamie's talk "AmBe Source Calibrations in the SNO+ Partial Scintillator Phase" -Shengzhao's talk "Po210 Backgrounds for SNO+ Partial Fill" -Pouya's talk "External Backgrounds in SNO+"

SNO+ Scintillator Phase

- Fill restarted in October 2020.
 AV bulk fill completed 2021-03-27
- LAB+PPO -

780 tonnes of LAB + 0.6-0.8g/L PPO currently (Aug2021) **PPO top-up campaign on-going** to reach desired 2g/L
via multi-stage distillation, water extractions, N2 and steam stripping, AV recirculation

SNO+ Scintillator Phase

Events / 0.02 MeV / year

- Fill restarted in October 2020.
 AV bulk fill completed 2021-03-27
- LAB+PPO -

780 tonnes of LAB + 0.6-0.8g/L PPO currently (Aug2021) **PPO top-up campaign on-going** to reach desired 2g/L

- Detector calibration
- Background measurements
- Physics goals:
 - solar neutrinos
 - geo- and reactor antineutrinos
 - supernova neutrinos

Antineutrino energy (MeV)

Reactor antineutrinos

IBD inverse beta decay ⊽_e+p→e⁺+n

SNO+ Tellurium Phase

- Future phase
 Underground Te plants
 commissioning started in 2020,
 now ready for operations after
 upcoming reviews and approvals
 Te acid purification (TeA Plant)
 Te loading via TeBD synthesis
 - (TeDiol Plant)
- LAB + PPO (2 g/L) + bis-MSB + Tellurium(0.5%)-ButaneDiol + DDA
 3.9 tonnes of nat Te - 1330 kg of ¹³⁰Te

 $Te(OH)_6 \rightleftharpoons Te(OH)_5O^- + H^+$

SNO+ Tellurium Phase

Counts/5y/20keV bin

- Future phase
 Underground Te plants
 commissioning started in 2020,
 now ready for operations after
 upcoming reviews and approvals
- LAB + PPO (2 g/L) + bis-MSB + Tellurium(0.5%)-ButaneDiol + DDA
 3.9 tonnes of nat Te – 1330 kg of ¹³⁰Te
- Physics goals:
 - ¹³⁰Te double beta decay measurement
 - ¹³⁰Te neutrinoless double beta decay search

Reconstructed Energy (MeV)

Backgrounds in ROI

ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ] Counts/Year: 9.47

Summary

Water phase

- Studied detector response and backgrounds
- Measured ⁸B solar neutrinos flux
- Set world-leading limits on nucleon decays
- Measured neutron capture efficiency and time
- [coming soon] solar and nucleon decay analysis updates with lower backgrounds and antinu study results

Partial-fill phase

 Characterized scintillator properties and backgrounds

Scintillator phase [ON-GOING]

- Characterization of scintillator properties and backgrounds while adding PPO
- Studies of solar neutrinos, geo- and reactor antineutrinos
- Studies of supernova neutrino bursts, pre-SN neutrinos and alert system preparation to join SNEWS

Tellurium phase

• Search for neutrinoless double beta decay in ¹³⁰Te

The SNO+ Collaboration

Thank you for the attention