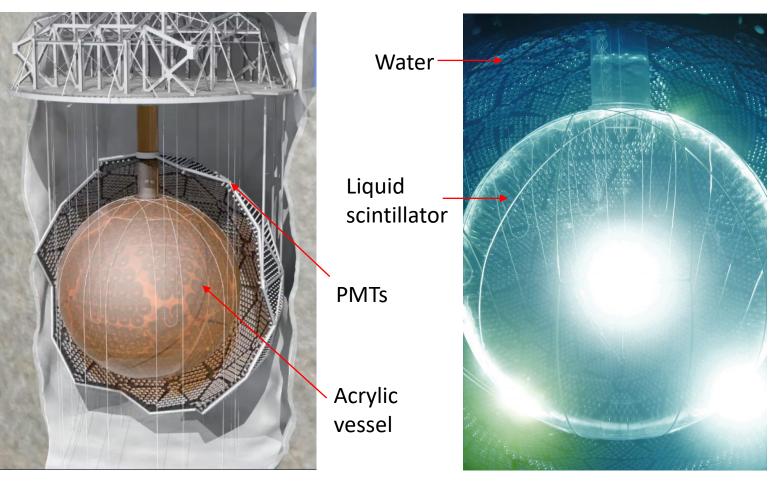
SNO+ Measurements and the Po210 Background

Shengzhao Yu

Aug 13, 2021


About me

- Physics graduate student at Laurentian University
- Supervisor: Christine Kraus
- Research area: background in the SNO+ detector
 - Po210 background analysis
 - Rn gas assay
- Sport before covid: basketball, now: going underground for Rn assay

SNO+

Liquid scintillator fill completed on March 27, 2021!

- Liquid scintillator detector, upgrade from SNO(heavy water detector)
- 2km underground
- 12m diameter acrylic sphere, 800 ton of Liquid scintillator
- About 10,000 PMTs
- Hold-down rope to cancel buoyant force in water

Source: SNO+ Collaboration

Source: SNO+ Collaboration

The background from radioactive decay

- Uranium chain: Secular equilibrium with the top part of the chain is assumed
- Hard to prevent the leaking of Radon gas into detector:
- Break secular equilibrium at Po210
- Most daughter decay before reaching the center
- Long-live Pb210 can deposit on the AV

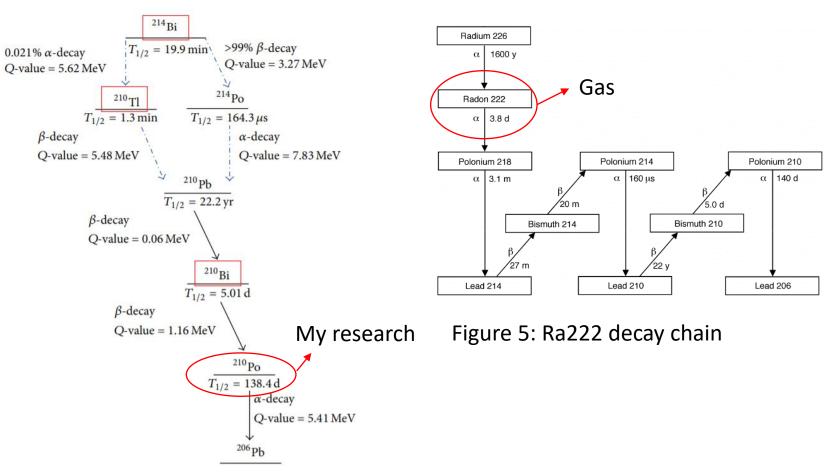
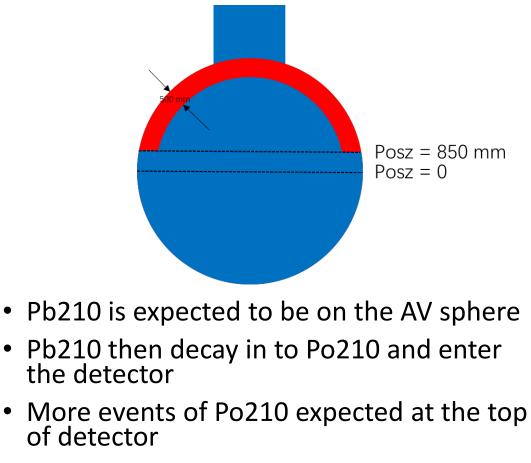
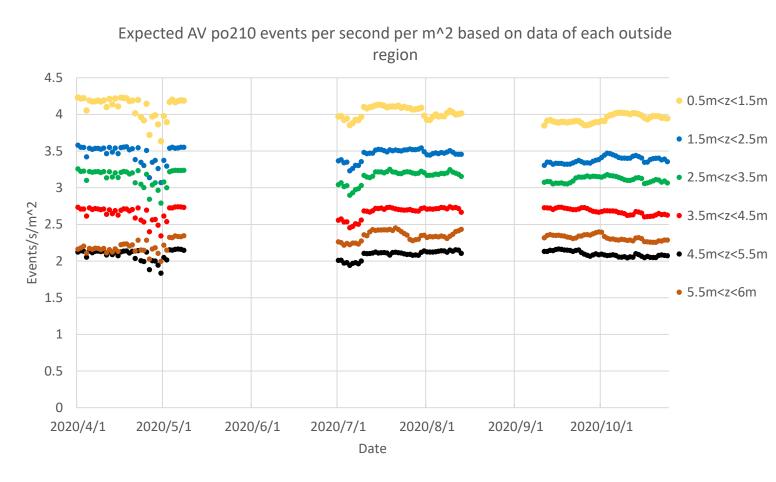



Figure 4: Part of 238U-decay chain relevant for SNO+

Source: IGCP Project 571: Radon, Health and Natural Hazards

The region of my analysis


Inner regions	Outer Region s	Range in Z (mm)
11	12	5500-6000
9	10	4500-5500
7	8	3500-4500
5	6	2500-3500
3	4	1500-2500
1	2	850-1500

 Analysis is for the data in partial fill period (top half detector filled with scintillator and bottom half with water)

region	Volume(m^3)	Area(m^2)
1	5.743224	24.50442
2	5.998478	24.50442
3	8.835729	37.69911
4	9.228428	37.69911
5	8.835729	37.69911
6	9.228428	37.69911
7	8.835729	37.69911
8	9.228428	37.69911
9	8.835729	37.69911
10	9.228428	37.69911
11	1.112647	15.68584
12	3.468842	15.68584
sum	88.57982	381.9734

Po210 result

- The closer the region to the water, the more po210 events seen
- This is opposite of what we expect
- The reason for this pattern is yet to be understood. It is supposed to be due to diffusion of contaminants (Uranium chain) from water to scintillator
- Stable level of Po210 in the period

Po210 result

Expected AV po210 events per second per m^2 based on data of each outside region 5 • 0.5m<z<1.5m • 1.5m<z<2.5m 4 • 2.5m<z<3.5m Events/s/m^2 3 • 3.5m<z<4.5m • 4.5m<z<5.5m 2 • 5.5m<z<6m 1 0 2020/4/1 2020/5/1 2020/6/1 2020/7/1 Date 2020/8/1 2020/9/1 2020/10/1

Apr01 2020, with the pipe region

Summary and Questions?

- Radon gas break the secular equilibrium of Po210
- Pb210 deposited on AV can leach off into scintillator
- More Po210 events are found for regions near water
- Level of Po210 in the near AV region in scintillator is stable from April 2020 to Oct 2020