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TZ/K‘\ About me S N@
N

 Never took a physics
course until | was 30

e T2K, SNO+, HK

e Cycling, hiking,
camping, reading,
singing, guitar

* flowers, vegan food
¢ XR
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Things we know
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hings we know (kind of)
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(Some) Things we don't know

G = 4 -
— ” xr

> Theinternational journal 8fSciénce /16

i » mass ordering/hierarchy

octant of 6, (not discussed)

: Anfindication of matter-antimatter
; sym'metrykviolation inneutrinos *

Coronavirus Hotsource - . Origin of aspecies §
* , Themodels driving Remnants of RevisedageforBroken -£%
the global response primordial nitrogen . ~Hill skulladds twistto, ~ .£5

. * tothepandemic. — inEarth’smantle . - .- humanevolution £

Exy 5 770

- .

Nature 580 339 344 (2020)
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LEGENDZ200 starting to take calibration data. LEGEND 1000 at CDR stage.

Things we don't know: v =v

Current best bounds on m__~

- @noamA 1 E (b)io,onea . 8
i a o & 160-180 meV.
s i e To probe into 10, need 18.4
BUE IE :  meV.
E 1078
¢ o LEGEND expects to see very
little background in ROl and a
5 © 3-sigma discovery potential at
15.4 meV.
* 6Ge, semiconductor
detectors.
% 7&;\:«;‘1:;3) Elﬂ’ PoE
I 2 1(]‘57
LEGEND preconceptual design report
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seatetr Things we don't know: v=v SNQ

Syed Muhammad Adil Hussain

Shengzhao Yu « %0Te in liquid scintillator.
Pouya Khaghani « Easily scalable by adding more Te.
Serena Riccetto « Expect to probe below 10 region.
: *Courtesy of Steve Biller o ' ', |
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New Physics Sensitivity: Phase-Space Weighted Half-Life
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Things we don't know

Planck 2018

e« Cosmology
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Things we don't know: CPV, MO

ANO -~
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1 CP Conserving

Leading term

Matter effect

CP Violating
Solar term

0., dependence  Octant sensitivity CP-odd phase

Disappearance

P(v,»v,)~ 1—|c05 8,,-sin’20,, + sin”20 ,-sin E}M]sm

2&”132 L
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(Leading and next terms only)

0, dependence  Octant sensitivity P, (v o ﬂ) = e G

— vV ) Test of CPT
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Things we don't know: CPV, MO

v, Disappearance
—

~— ] 2.5° Off-axis v flux

Osc. Prob

1~ —— AM3,=2.5x10° eV?, sin®0,,=0.5 —

ﬂ

0.5

_-__.J(__)._.5 _4.__1_._‘.--1“ SES 1:5 T -_2-_-”" 2-5 3
E, (GeV)

« Tests CPT symmetry

- LO" dependence on sin?20,,

»hard to distinguish 6,,>45° from 0,,<45°

« LO dependence on |AmZ_|

*doesn't depend on sign of mass splitting
(* Leading Order)
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AVO~VvA
v, Appearance
'80'1—'5"""":"'
2 v == 2.5° Off-axis v _flux
:}:; 0.08}+ F‘ 'bcp=0°- NH, v
o 7 — 5,,=270° NH, v
0.064 24 -se= 8,=0°% NH, ¥
| === 8,=270° NH, ¥
0.04
0.02H
0

Tests CP symmetry

LO dependence on sin?20 ,, sin?6,,

- can separate 0,,>45° from 0,,<45°

Sub-leading dependence on sin(3_, )
» can detect CP violation (~27% effect)
Sub-leading dependence on £Am?,,

» ~10% matter effect
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Things we don't know: CPV, MO 2 &2

NOVA Prellmlnary _TIK Runl-10 Prehmmary
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Total events - neutrino beam Neutrino mode e-like candidates
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Things we don't know: CPV

CP violating phase (dcp)

can take a value between -180° and 180°

«— CP symmetric

-90° >

Enhance electron neutrino
appearance

the 30 C.L.

(No neutrino-antineutrino difference)

Disfavored
region at 90°

Enhance electron
antineutrino appearance

+180°

«— CP symmetric
(No neutrino-antineutrino difference)
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Things we don't know: CPV &2

Comparison to T2K NOVA Preliminary
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Future long-baseline experiments

* Reduce both statistical and systematic uncertainties.
* More powerful beams and larger detectors
e More neutrinos
« Better detectors and more near detectors

/ Hyper-Kamiokande In construction (\ NEUTRINO
e ~8xFD of SK, WC far  very large liquid Argon (LAr)

detector, ~295 km near/far detectors, ~1300 km
e high-power beam from e high-power beam from FNAL

JPARC

 Proto-DUNE detectors tested
* new near detectors at CERN.
- ND280 upgrade

- IWCD

e« Gd (now also in SK)
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Can we help the world?

Science, technology, and the neutrino

“l don’t say that the neutrino is going to be a practical thing, but it has been a time-
honored pattern that science leads, and then technology comes along, and then,
put together, these things make an enormous difference in how we live.”

—Fredrick Reines, winner of the Nobel Prize and co-discoverer of the neutrino,
NYT interview, 1997

bt flibrary tand gav/egi-bin/getfile 20032 6606, pdf
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Can we help the world?

A practical thing: ‘near-field’ reactor
monitoring

Monitor reactor operational status, power and fuel consumption and composition

‘Near’: less than 1 km, typically 10-100 meters — plant access granted by operators

High statistics: a few thousand events per day per ton per GWt, sufficient to populate a spectrum

Reactor power of interest is > ~50-3000 MWt

Technology: cubic meter scale scintillator detectors

The Rovno experiment was the first to provide a dedicated

monitoring detector in the mid-1980s — based on concepts
from Mikelyan (‘77)

Numerous experiments have significantly improved
efficiency, resolution and deployability

SNOLAB User's Meeting Aug 13th 2021

Group
SNL/LLNL

Country
USA

Technology

‘PANDA’

Japan

‘Mars’

UK

‘CORMORAD

Italy

Application

Compact/Abovegr
ound/Portable

‘Nucifer’

France

Tohoku L.

Japan

AECL

cajus

Gd-doped liquid
scintillator

“Industrial design”

Aboveground

CANDU reactor

i

Niigata U.

Gd-doped Plastic

Deployable

U. Hawaii

usa

Fast Liquid Scint.

Directional
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Can we help the world?

A not-yet-practical, but still promising thing: ‘far-
field”’ reactor monitoring

* Monitor, find indications of, or exclude the existence of, operating reactors

* ‘Far’: more than 1 km, less than 200 km with megaton detectors, 1000 km
only with directionality in megaton detectors — varying degrees of access

* low statistics: a few events per week, month or year

* Reactor power ~50 MWt — roughly generating 8 kg/one ‘Significant
Quantity’ per year (SQ = international standard for monitoring)

Technology: Variations on KamLAND, Super-Kamiokande, Borexino and other large detectors
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Can we help the world?

The Advanced Instrumentation Testbed (AIT) is the location of the world’s first dedicated remote reactor monitoring
demonstration - ‘Neutrino Experiment One, or NEO

= AIT is a site and_and organizational structure that will
enable real-world, at-scale testing of enhanced
antineutrino-based monitoring technologies for
nuclear reactors

= AIT will house NEO and follow-on experiments for
nonproliferation or physics — NE2,NEn...

= The Boulby Mine in Northern England is the preferred
deployment location for AIT

= AIT requires new excavation of a 25 meter cylindrical
cavern to accommodate the first neutrino experiment ¥
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Can we help the world?

Neutrino Experiment 1 at AIT

Main Project Objectives: Doping the water with gadolinium greatly
increases sensitivity toinverse beta
* Demonstrate monitoring at a single reactor interactions of antineutrinos
complex

V+p—e +n

— at 25 km standoff

—  With a kiloton-scale Gd-H;0 or Gd-WhL5
detectar

= At-scale test-bed for advances in large water- A high-level look at the experiment

based detectors relevant for fundamental physics
and nonproliferation

=  ‘Water Cherenkov detector, doped with

HARTLEPOOL Reactors gadalinium and/or scintillator (Gd-WhLS)
2 cores
1570 MWt per core *  15-20 m cylindrical detector with veto
25 km standoff

and buffer regions

* kiloton scale fiducial inside buffer

«  spyveral thowsand PMTs

ke i
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Can we help the world?

Nu Tools: Exploring Practical Roles For Neutrinos In
Nuclear Energy And Security

In FY20, a committee of US DOE National Lab scientists and academics were charged by the
DOE NNSA Office of Defense Nuclear Nonproliferation Research and Development:

“..to facilitate broad engagement with interested communities on the topic of antineutrino-based
monitoring of nuclear reactors and associated post-irradiation fuel cycle activities. The particular
focus... should be on the potential utility of antineutrino detection technologies... in the
context of existing or potential policy needs.”

Stakeholders interviewed across multiple sectors:

Utility criteria Determined by...
Nuclear Reactor
Neutrino 5 Design & .Need S OI' ... End user
Phvsics & . \ ' g improved capability
y Engineering
Technology Existence of a neutrino ... Tech development
signal community
+Mini-Workshop with e -
. s Availability of a neutrino ... Tech development
Nuclear Security the neutrino community: 4 iection technology community

® 21 presenters
& Safeguards Compatibility with

implementation constraints End user

®* >100 more attendees

Final Report to be released to the public at the INMM Annual Meeting on August 31, 2021
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Things not covered here
* Neutrinos in multimessenger astronomy.

- lceCube/DeepCore.

e Detection of neutrinos from the CNO cycle :

- Borexino.

* Reactor neutrinos
- RENO, Double Chooz, Daya Bay, (JUNO).
« Astrophysical neutrinos =
- Antares, KM3Net.

* Farther-future experiments
- Theia, HKK

e and a lot more!
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Summary and Conclusion

« Key questions about neutrinos are as yet unanswered BUT
some tantalising hints are beginning to emerge (normal
mass ordering, CPV, 0,, upper octant).

- will they remain?

e Setting better and better limits on the paramaters of Ovf3p.
“Discovery” sensitivities in next-generation experiments.

e Neutrino experiments/detectors are contributing to a broad
range of physics (not covered here)

- multimessenger astronomy, UHE neutrinos, SN
neutrinos, etc.

» There's a lot to do.
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