

The NEWS-G Experiment

SNOLAB User Forum 2021-08-13

Philippe Gros (Queen's U) for the NEWS-G collaboration

- Research scientist at Queen's
- Career on gaseous detectors
 - Hadron tracking in ALICE at LHC
 - Electron tracking detection for ILC
 - Gamma detection and polarimetry in HARPO
 - Dark matter detection in NEWS-G?
- Hobbies
 - Hiking, biking, traveling
 - Poor attempts at painting the landscapes out there
 - Snowman making

- Gaseous detector:
 - light target nuclei (neon, helium, hydrogen)
 - Light WIMP sensitivity (<1GeV)
 - Capability to use multiple target gases, and different pressures for BG characterisation
- 140cm detector built
 - Full scale test at LSM (France) in 2019 with neon and methane
 - Copper sphere, lead shield, temporary neutron shield (water)
 - Installation complete at SNOLAB early August!

NEWS-G Spherical Proportional Counter (SPC)

- Grounded sphere with sensor anode
- Low capacitance, high gain
 -> low threshold
- Simple design

-> pure materials, low background

2021-08-13

-8000

Amplitude

Pulse Shape Discrimination

- Multiball sensor "Achinos"
 - Small balls -> high gain
 - Large structure -> high drift field
- 2 channels
 - "North" (5 balls), "South" (6 balls)
- Improved fiducialisation
 - N/S comparison
 - Possible rejection of localised background (bottom of sphere, equator)

- 213nm UV laser
 - Single photon photoelectric from copper or steel surface
 - 10Hz repetition, 0.5mJ/pulse, adjustable: single electron to few keV equivalent (depends on gas and E field)
 - Pulse by pulse monitoring and tagging with photodetector
- Radio active sources
 - ³⁷Ar: 2.9keV, 0.27keV. Uniform volume distribution (gas). Not available during physics runs (would be strong background)
 - ²²Na (MeV gammas) external through copper sphere
 - AmBe (neutrons) external through copper sphere

Preliminary runs at LSM 2019

- Copper sphere and lead shield built in France
- Assembly test needed underground
- With small effort, possibility of quick physics
 - Final sphere and lead shield
 - Water tank for neutron shield
- 2 months data taking
 - Neon + 7% CH4 at 1bar
 - Pure CH4 and 135mbar

- Validation of sensor in low background
 - Sensitivity to "space charge" from secondary ionisation
- Validation of laser calibration system
 - Electrons extracted from copper surface through photoelectric effect at 213nm (UV)
- Development of analysis methods
 - 2 channel acquisition: crosstalk and shared signal
 - Electron counting
- Unexpected background
 - Excess surface background (possible contamination during surface etching)
 - Prompted second etching UG at SNOLAB

• Very low field at large radius

- <1V/cm
- Very sensitive to field created by drifting ions

Space charge effect

- Charges created by alpha events
 - Ions drifts over several seconds
 - Drift velocity increased
- Laser measurement sensitive
 - Drift velocity
 - Electron extraction efficiency
- Background associated to alpha events
 - Increased rate for few seconds
 - Process unknown (recombination?)

Installation at SNOLAB 2020-2021

- Sphere and shield delivered in Sudbury Dec 2019
 - UG Jan-Feb 2020
- Stalled by Covid pandemic March 2020
- Sphere internal etching Oct 2020
- Sphere and shield installation in Cube Hall Nov 2020 Jan 2021
- Stalled by 2nd lockdown
- Gas system installed May-July 2021
- Sensor installation August 4th 2021
- First Light in argon August 10th 2021 (!!!)
- Commissioning ongoing...

Jueen's

- NEWS-G has already proven performance in temporary shield at LSM 2019
- Installation completed at SNOLAB despite Covid restriction in 2020-2021

Many thanks to all at SNOLAB!

• Ready to take first data at SNOLAB now!

Queen's University Kingston - G Gerbier, G Giroux, R Martin, S Crawford, M Vidal, G Savvidis, A Brossard,

F Vazquez de Sola, K Dering, V Millious, J McDonald, M Van Ness, M Chapellier, P Gros, JM Coquillat, JF Caron, L Balogh

- Copper vessel and gas set-up specifications, calibration, project management
- Gas characterization, laser calibration on smaller scale prototypes
- Simulations/Data analysis

- Sensor/rod (low activity, optimization with 2 electrodes)
- Electronics (low noise preamps, digitization, stream mode)
- DAQ/soft

Aristotle University of Thessaloniki - I Savvidis, A Leisos, S Tzamarias

*

*

*

- Simulations, neutron calibration
- Studies on sensor

LPSC/LSM Laboratoire de Physique Subatomique et Cosmologie, Laboratoire Souterrain de Modane) Grenoble -

D Santos, M Zampaolo, A DastgheibiFard JF Muraz, O Guillaudin

- Quenching factor measurements at low energy with ion beams
- Low activity archaeological lead
- Coordination for lead/PE shielding and copper sphere

Pacific Northwest National Laboratory - E Hoppe, R Bunker - Low activity measurements, copper electro-forming

RMCC Kingston - D Kelly, E Corcoran, L Kwon - ³⁷Ar source production, sample analysis

SNOLAB Sudbury - P Gorel, S Langrock - Calibration system/slow control

University of Birmingham - K Nikolopoulos, P Knights, I Katsioulas, R Ward - Simulations, analysis, R&D

University of Alberta - MC Piro, D Durnford, Y Deng, P O'Brien, C Garrah - Gas purification, data analysis, simulation

Associated labs: TRIUMF - F Retiere

Subatech, Nantes - P. Lautridou, F. Vazquez de Sola

Backup

The NEWS-G Experiment Philippe Gros, Queen's U

Laser calibration: single electrons

- Low laser power:
 - mostly 0 or 1 primary electrons
- Trigger on photodetector
 - 0 electron background included
- Fitting Poisson distribution
 - Polya for gain fluctuation
 - Includes contribution of 2 or 3 electrons
 - mean number of electrons µ can be adjusted by with photodetector amplitude cuts

- Single electron response measurement
 - On underground detector
 - Regularly during physics measurement
- Electron recoil measurement from X-ray sources
 - ³⁷Ar (270eV, 2.9keV) on underground detector
 - Al (1.49keV) and ⁵⁵Fe (5.9keV) in smaller lab detectors
- Measurement of W-value in range 0.26 5.9keV
 - Measurement compatible with published values (within 10%) for CH4 gas
 - Extending to all gas mixtures used in NEWS-G

Detector monitoring

- High intensity laser (100s of electrons): low fluctuations
- Tagging from photodetector
- 10Hz during physics run
- Drift velocity measurement
 - t_{sphere}-t_{photodetector}

ti19s007 / 1b Ne / HV = 1630 DRIFT

7 Neutron scattering

Measurement done at the TUNL facility Neutron pulsed beam: $E_n = 545 \pm 20 \text{ keV}$ 8 energy points: 0.34 to 6.8 keV_{nr} Publication under review

1.3 keV nuclear recoil

Same experiment is under development with the tandem accelerator of the Reactor Material Testing Laboratory at Queen's University.

Marie Vidal Ph.D. candidate, Queen's University

<number>