

Alan Robinson alan.robinson@umontreal.ca

12 August 2021

Dark matter problems Nuclear physics problems

 Nuclear recoil calibration Montréal will soon have the best facility in the world.

EN-1 5 MV Tandem

Wide variety of heavy ion beams available.
4 µA of continuous proton current.
< 1 keV energy resolution / stability.

Neutron recoil calibrations

- $E_r \propto E_n \cos \theta$
- Previous PICO calibrations used simulated distribution of $\boldsymbol{\theta}$
- New target station to directly measure scattering angle.
 - 1% acceptance at q=3±0.15 MeV/c

Monochromatic neutrons

- ⁷Li(p,n)
 - Large slowly-varying cross-section (~20 mb/sr) for $E_n > 70$ keV.
 - Centre-of-mass boosted to 30 keV neutron energy.
- ⁵¹V(p,n)
 - Resonances as low as 4.8 keV
 - Low uncertainty in neutron energy.
 - Fewer neutrons (0.3 mb-keV/sr) at 4.8 keV resonance

Montreal vs. TUNL – neutron scattering facilities

Parameter	TUNL	Montreal
Target used	⁷ Li(p,n)	⁵¹ V(p,n) or ⁷ Li(p,n)
Minimum usable neutron speed (energy)	3100 km/s (50 keV)	960 km/s (4,8 keV)
Typical beam current on target	0.5 µA	3.5 µA
Neutron flux at target station at lowest speed	2.5 n/cm ² /s/keV	$0.4 \text{ n/cm}^2/\text{s on} < 1 \text{ keV resonance}$
Scattered neutron detectors	26 2" x 2" cylindrical liquid scintillator cells	Proposed boron-10 loaded scintillator

- Data collection rate ~1.6 times greater at Montreal.
- Minimum measurable recoil momentum ~6 times lower at Montreal
- Pulsing at TUNL reduces gamma backgrounds by TOF. Better rejection is obtained by B-10 capture at Montreal.

New resonances – X(17 MeV)

- Atomki anomaly invariant mass resonance in internal pair-production from ⁷Li(p,g)⁸Be and certain other reactions
 - Verification experiment under construction at Montréal

Neutron production (α, n)

- Boron-loaded scintillator array can be remounted to permit thick-target measurements of (α,n) neutron yields of any vacuum-compatible sample you require.
 - Caveats:
 - Trade-off in yield accuracy / energy precision of measurement.
 - Refurbishment of a power supply for the helium duoplasmatron source.
 - First measurement would require a calibration campaign.

Local facilities support

- MRS supported electronics and machine shops
- Dedicated accelerator / vacuum systems technician
- PVD (evaporator and e-beam) and target characterization (RBS)
- Local McDonald Institute supported engineering resources
- Cleanrooms, detector preparation labs.
- Vacuum, mechanical, and nuclear instrumentation materials on site.
- Easy crane and wide corridor access.
- High beam availability

0° Beamline

Neutron detector

Fixed target station.

Seria!# AW/H706193

Proton beam pipe

Neutron production target