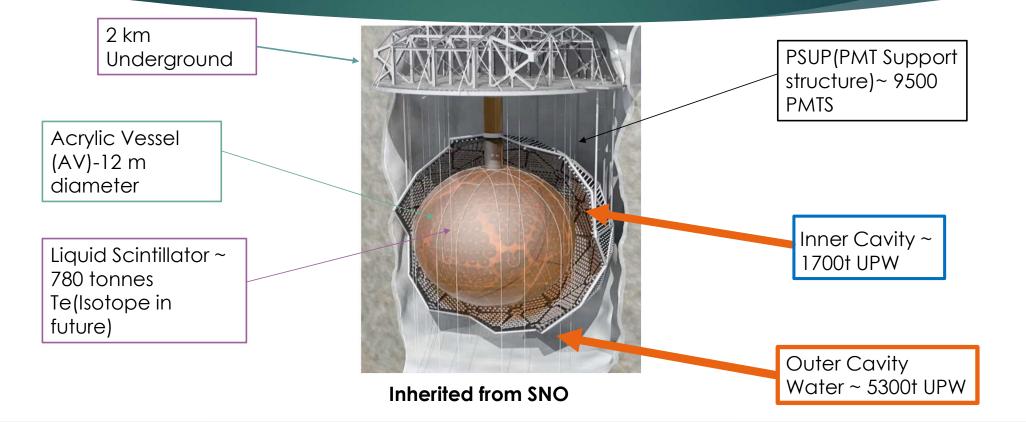


Evaluating SNO+ External background through Radon Assays

ADIL HUSSAIN

SNOLAB USER MEETING 2021



Laurentian University Université Laurentienne

A little about myself!

- Final year Masters student at Laurentian University
- International Student from Pakistan
- Completed my undergraduate degree from Lake Forest College (Illinois)
- Working under the supervision of Dr Christine Kraus
- Outside of work I like to follow sports like Cricket.
- I also like to cook

SNO+ Detector: Neutrino-less Double Beta Decay Experiment

Backgrounds within SNO+

- ▶ There are two types of backgrounds: Internal and External.
- ▶ Internal Backgrounds are non signal events that occur within the AV volume.
- External backgrounds are events that occur outside the AV volume but can be reconstructed within the AV volume.
- Background Contributions are as follows:
- 2Vbb
 Uranium-238 chain
 Thorium chain
 External Backgrounds

≻Cosmogenic ≻α,n ≻B⁸

External Backgrounds

Radioactivity:

- ▶ U²³⁸ decay chain, Rn²²² and its daughters(Bi²¹⁴)
- ▶ Th²³² decay chain, Tl²⁰⁸ isotope

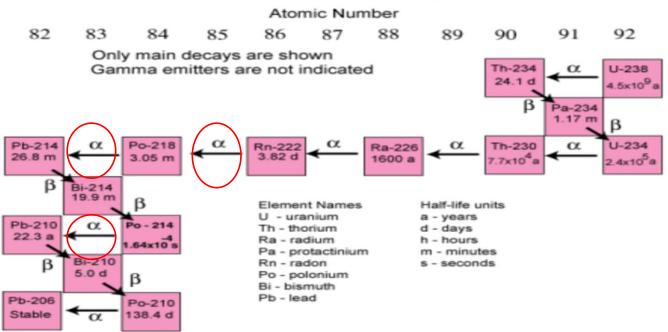
Sources:

- Surrounding rocks
- Acrylic Vessel
- Hold up and Hold down ropes
- PMTs

Target levels

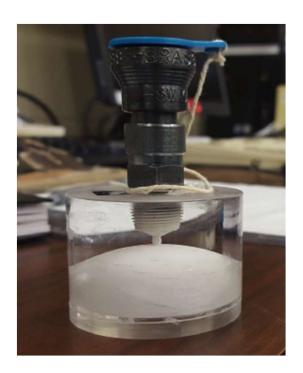
- ► Bi²¹⁴: 2.1 x 10⁻¹³ gU²³⁸/gH₂O
- ▶ TI²⁰⁸: 5.2 x 10⁻¹⁶ gTh²³²/gH₂O
- These target levels allow minimum backgrounds to leak into the Region of Interest(ROI).
- Fudicial volume cut is applied to remove external backgrounds from ROI.
- UPW plant consistently purifies cavity water from contaminants.

Expected backgrounds in ROI

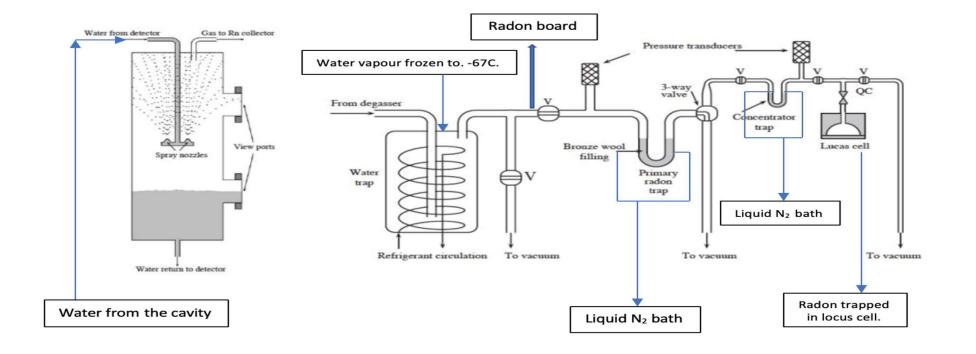

Isotope	1 year	5 years
2ν bb	6.3	31.6
B ⁸	7.3	36.3
Uranium chain	2.1	10.4
Thorium chain	1.7	8.7
External	3.6	18.1
α,n	0.1	0.8
Cosmogenic	0.7	0.8
Total	21.8	106.8

Expected 0Vbb Signal: ~ 22 events/year

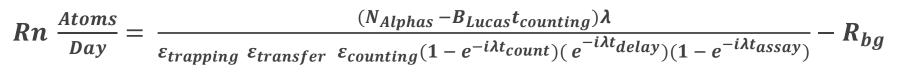
Backgrounds of SNO+


- Radon due to its long half life and mobility is readily prevalent in the mine air.
- Radon Assay was a technique developed during the SNO time to determine the radon concentration in the ultra pure cavity water.
 - Radon decays into its daughter which results in 3 alpha decays for each radon atom.

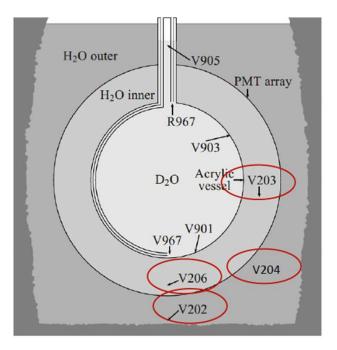
The Uranium-238 Decay Chain

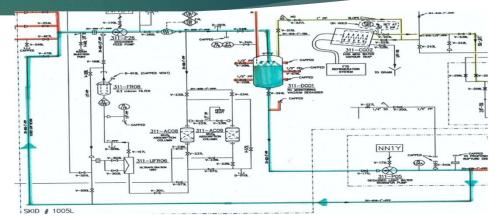


Radon Assays


- Radon assay allows for direct measurement for the external backgrounds of SNO+.
- To enable the alpha detection technique from radon decay, customized Lucas cells were produced.
- Lucas cells are ZnS scintillator coated which count alpha decays.
- Alphas emit scintillation light when they interact with ZnS
- It takes about a shift to perform a water assay.

ASSAY SYSTEM – located at SNOLAB


Radon Calculations


- \blacktriangleright N_{Alphas} = number of alphas
- $\blacktriangleright B_{Lucas} = \text{Background of Lucas cell}$
- $t_{counting} = counting time.$
- T_{delay} = time between end of assay and start of counting.
- \triangleright $\varepsilon_{trapping}$ = trapping efficiency = 0.640
- $\varepsilon_{counting} = counting \ efficiency = 0.740$
- $\varepsilon_{transfer} = \text{transfer efficiency} = 1$

Assay results

- Assay is performed at several locations of the cavity.
- Assays are usually 30 to 60 minutes long.
- V202 is the **bottom** of the cavity.
- ▶ V203 is PSUP and **AV equator**.
- ► V204 is **bottom of the PSUP**.
- ► V206 is **between PSUP and AV bottom**.

Assay System Background

Date	Rn atoms/45 minute	Alphas	Counting time/days	Water/L	Assay Time/min
18/11/2020	94±28.2	101	6.958	810	45
20/04/2021	146.8±44	160	7.335	1140	60
26/07/2021	75.8 ± 22	78	6.125	540	30

Water Assay Results

Date	Location	Rn atoms/sample	Water/L	Assay Time/min	Concentration gU ²³⁸ /gH ₂ 0
09/05/2019	Bottom	1070 ± 321	640	40	2.82E-13
03/06/2019	AV Equator	467 ± 140	877	60	9.90E-14
20/06/2019	Between PSUP and AV Bottom	853 ± 255	1080	60	1.33E-13
04/07/2019	Bottom of PSUP	824± 247	1080	60	1.29E-13
19/11/2020	AV Equator	378±113	600	30	1.06e-13
23/04/2021	AV Equator	2291± 687	810	45	4.78e-13
27/07/2021	Bottom of PSUP	1100 ± 330	819	45	2.27e-13

SNO+ target = $2.1 \times 10^{-13} \text{ gU}^{238}/\text{gH}_2\text{O}$

- Assay results and data analysis show an agreement.
- SNO+ is maintaining target level concentrations for external U-238.
- Assays are conducted very often to monitor any radon ingress.

A Huge thank you to Operations Group and Scientific Support Group for all their effort and Support!

QUESTIONS/COMMENTS?