

Latest Results from DAMIC at SNOLAB

Daniel Baxter ...on behalf of the DAMIC Collaboration

> 2021 SNOLAB User Meeting August 12, 2021

SNOLAB User Meeting 2021 – DAMIC – Daniel Baxter

A little about me...

- Northwestern University (2013-2018)
 - PhD with Eric Dahl on PICO
- University of Chicago (2018-2021)
 - KICP Postdoctoral Fellow on DAMIC
- Fermilab (2021-present)
 - Associate Scientist working on quantum science and OSCURA
- <u>Fun Fact</u>: Among my many nerdy past-times, I am a *huge* musical theater fan

DAMIC Collaboration

DAMIC at SNOLAB

DAMIC at SNOLAB CCDs

- 4000x4000 pixels (6x6 cm²)
- Pixel size 15x15 microns²
- Depth ~675 microns
- Cooled to 140 K
- One Kapton cable per CCD
- Dominant intrinsic background expected to be tritium production from direct activation of the silicon wafers prior to production

Charge Coupled Devices

• Interaction with silicon produces free charge carriers...

...which are drifted across fully-depleted region...
 No loss of charge

- ...and collected in 15 micron square pixels...
 exceptional position resolution
- ...to be stored until a user-defined readout time after many hours.

Charge Coupled Devices

DAMIC Background Model (2016)

DAMIC Background Model (2020)

.4 E

Counts Per

Background Coincidence Analysis

A. Aguilar-Arevalo et al. JINST 16, P06019 (2021)

DAMIC WIMP Results (2020)

DAMIC WIMP Results (2020)

- Clear excess rate over background model below 200 eV
- Consistent with uniform (bulk) spectrum
- We choose not to report this as a potential WIMP signal, as further background model validation is required

DAMIC Phase 1 Complete!

- DAMIC at SNOLAB is the first CCD dark matter array
- We have improved the limits by a factor of ~10 and excluded a significant fraction of the CDMS-II Si allowed region
- Inevitably, we were going to have a few surprises along the way
- ... and we learned a lot about how low background CCDs work!
- Skipper CCDs are the future

Next Steps: Verify

- Ongoing upgrade to the SNOLAB detector will install Skipper CCDs
 - Collaboration between SENSEI and DAMIC-M towards OSCURA
- ...another measurement with lower threshold in the same background environment
 - If this is a threshold effect, it should go away
 - If it is a missing component in the background model, we will have many more events to study

Conclusions – the CCD Program

- DAMIC at SNOLAB continues to produce new, interesting results:
 - NR Limits: PRL 125, 241803 (2020) [arXiv:2007.15622]
 - ER Limits: PRL 123, 181802 (2019) [arXiv:1907.12628]
- SENSEI has advanced the CCD technology with single-electron resolution Skipper amplifiers
 - And will continue to improve limits with larger exposures with lower background rates
- DAMIC-M will improve on this with lower backgrounds, single electron resolution, and much larger exposure
 - Low background chamber (2021)
 - Full detector (installation 2023)
- OSCURA will push the limits of the CCD technology to 10 kg of silicon, single-electron threshold, 0.01 dru detector
 - DoE BRN funded R&D experiment merging the efforts of DAMIC at SNOLAB, DAMIC-M, and SENSEI
 - Cleared Gateway 0 for SNOLAB

Non-radiogenic Backgrounds

- Studies of dark rate sources are very active
- DAMIC at SNOLAB measures a dark rate of ~600 [g-day⁻¹]

Simulated Geometry

Parent Chain	Isoptope	Q value
^{238}U	$^{234}\mathrm{Th}$	274 keV
	234m Pa	$2.27~{ m MeV}$
226 Ra	214 Pb	$1.02 \mathrm{MeV}$
	$^{214}\mathrm{Bi}$	$3.27~{\rm MeV}$
²¹⁰ Pb	$^{210}\mathrm{Pb}$	63.5 keV
	$^{210}\mathrm{Bi}$	$1.16~{\rm MeV}$
232 Th	228 Ra	45.5 keV
	$^{228}\mathrm{Ac}$	$2.12 { m ~MeV}$
	212 Pb	$569 { m ~keV}$
	$^{212}\mathrm{Bi}$	$2.25~{\rm MeV}$
	$^{208}\mathrm{Tl}$	$5.00~{\rm MeV}$
40 K	40 K	$1.31 { m ~MeV}$
Copper	60 Co	$2.82 { m MeV}$
Activation	59 Fe	$1.56 { m ~MeV}$
	$^{58}\mathrm{Co}$	$2.31 { m ~MeV}$
	$^{57}\mathrm{Co}$	$836 \ \mathrm{keV}$
	$^{56}\mathrm{Co}$	$4.57~{ m MeV}$
	$^{54}\mathrm{Mn}$	$1.38 { m ~MeV}$
	$^{46}\mathrm{Sc}$	$2.37~{\rm MeV}$
$^{32}\mathrm{Si}$	$^{32}\mathrm{Si}$	227 keV
	^{32}P	$1.71 {\rm ~MeV}$
Silicon	²² Na	$2.84 { m MeV}$
Activation	$^{3}\mathrm{H}$	18.6 keV

Polyethylene
 Aluminum
 Outer Lead
 CCD sensor

Kapton cable
 Substrate Silicon

Simulated Background Model

... paper in preparation

Detector Response

- We use "fast" reconstruction method to group simulations above 6 keV for fit
- Paste events sampled from the resulting model on "blank" images
- Run "likelihood" clustering method on fake images

