Characterizing the SNOLAB radiation environment

SNOLAB User Meeting, 12 August 2021

Deepak Tiwari University of Regina, TRIUMF

The SNOLAB radiation environment The measurements:

- Thermal neutrons

Fast neutrons

• SNO collaboration estimate, ~ 4000 ± 120 neutrons $m^{-2}day^{-1}(2\pi sr)^{-1}$

with an unknown spectrum [SNOLAB SL-SCI-RES-00-001-P].

 PICO-2L (shield-off) took measurement for 104 (35) single bubble candidates over 18.64 (19.46) days, for 3.2 (42) keV.

Gamma photons

- Nal(TI) 1.78 kg measurement at PICO-2L location ~ 1191.1 $\gamma m^{-2} day^{-1} (4\pi sr)^{-1}$
- SNOLAB Cavern Perillo Isaac et. al (1997 SNO-STR-97-009).

SNO S5-200A-1 NCD detector measurement : ~ 4140 ± 120 neutrons $m^{-2}day^{-1}(4\pi sr)^{-1}$

PICO-2L

Phys. Rev. D 93, 061101 (2016)

Pressure Transducers

T1 Temp. Sensor Differential Bellows T3 Temp. Sensor

Copper Encased Piezo-electric Transducers

Synthetic Silica Jar

PICO-2L

Configuration for dark matter run

Water shields removed for fast neutron measurements

Layout taken from SNOLAB STR-2007-02.

Drift-J geometry as modelled in MCNP-Polimi simulation

The neutron source considered: 232Th & 238U chains for shotcrete and norite rock, 222Rn in air.

Drift-J geometry as modelled in MCNP-Polimi simulation

Source rate prediction

Material	Source	Activity [n/kg/yr]
Norite	1.3 ppm U, 6.5 ppm Th	5010
Shotcrete	2.46 ppm U, 15.24 ppm Th	12000
Radon (in air)	131 Bq/m3	13700

Neutron rate prediction calculated using SOURCES-4C

Material	Source	Rate
air	²²⁸ Rn	$46.1 \text{ n m}^{-3} \text{ day}^{-1}$
shotcrete	²³² Th	$6.80 \text{ n y}^{-1} \text{ g}^{-1}$ @ 15.24 ppm 232 Th
shotcrete	²³⁸ U	$3.25 \text{ n y}^{-1} \text{ g}^{-1}$ @ $2.46 \text{ ppm}^{238} \text{U}$
norite	²³² Th	43.1 n y ⁻¹ cm ⁻² $(2\pi sr)^{-1}$ for 3 inch shotcrete thickne
norite	²³⁸ U	75.3 n y ⁻¹ cm ⁻² $(2\pi sr)^{-1}$ for 3 inch shotcrete thickne

Neutron rate prediction calculated using SOURCES-4C and as used in the PICO-2L simulation

Monoenergetic neutron study

The bubble multiplicity (n) and the total event rate (T) are related by the expression:

$$egin{aligned} T(n) &= T(1-p)p^n, \ &\sum_{i=1}^N (n_i-1) \ &\sum_{i=1}^N \Theta(n_i-1) \ &\sum_{i=1}^N \Theta(n_i-1) \end{aligned}$$

θ : Heaviside step function

geometric model the approximates the observed simulation results for bubble multiplicities n>=2

Results for PICO-2L shield-off

Source	Singles	Total	S/T	р	S/T-(1-p)
²²² Rn	0.1648 ± 0.4059	0.3734 ± 0.6111	0.4413±1.3052	0.5913±1.8215	0.0326 ± 2.240
²³² Th(shotcrete)	4.4768 ± 2.1158	10.1137±3.1802	0.4426 ± 0.2513	0.5789±0.3640	0.0215 ± 0.442
²³⁸ U(shotcrete)	2.0017 ± 1.4148	4.5667±2.1370	0.4383±0.3716	0.5940 ± 0.5130	0.0323±0.63
²³² Th(norite)	5.9737 ± 2.4441	13.3773±3.6575	0.4466±0.2197	0.5829±0.3159	0.0294 ± 0.384
²³⁸ U(norite)	1.4224 ± 1.1926	3.1824±1.7839	0.4469 ± 0.4508	0.5699±0.6726	0.0168 ± 0.809

Multiplicity	Data (3.45 kev) (day^{-1})	Simulation(3.23 kev) (day $^{-1}$)	Ratio (D/S)
1	$7.28{\pm}0.58$	14.04±3.75	0.52±0.14
2	4.63±0.44	7.44±2.73	0.62 ± 0.24
3	2.30±0.31	4.26±2.07	0.54±0.27
4	$1.72{\pm}0.27$	2.38±1.54	0.72 ± 0.48
5	0.94±0.20	$1.43{\pm}1.20$	0.66±0.57
6	0.57±0.15	0.86±0.93	0.66 ± 0.74
7	0.37±0.12	$0.47{\pm}0.68$	0.79±1.18
≥8	$0.20{\pm}0.06$	0.73±0.86	0.27±0.33
Total	18.02 ± 0.88	31.61 ±5.62	$0.57 {\pm} 0.01$

.09 123 34 48)97

Systematic uncertainties

Effect of bubble wrap: 3 mm thickness polyethylene, density 0.017 g/cm, results in the change in the event rates is < 5%.

Effect of the drift geometry ~ 5 %

Presence of moderating materials < 2%

Epoxy layer coating ~ 1 mm thickness : < 2%

Quantity	Original drift	Reduced Drift Volume	No-moderators c
p-value	0.583629	0.622059 (6.58466 %)	0.58025 (-0.5789
S/T	0.450749	0.427299 (-5.20245 %)	0.448658 (-0.4638
S/T-(1-p)	0.0343785	0.0493577(43.5714 %)	0.0289083(-15.91
Total events	2.17166	2.27186 (4.61398 %)	2.20203 (1.3984

Total Systematic uncertainty ~ 8%

Thermal neutrons: NCD Simulation

Work In progress

Measurements & MCNP Simulations with 1.78 kg Nal(TI)

1.78 kg Nal(TI) detector [Thesis, Alan Robinson

Thesis, Alan Robinson

Simple Nal geometry in MCNP simulation

Nal γ measurements

Work In progress

Summary & Conclusions

- drifts can be constructed.
- is needed to understand:
 - the spectral shape of the fast neutron flux
 - the detector sensitivity
 - the effect of the drift environment on neutron propagation
 - A detailed study of systematics is underway.
- Tech-note drafted, gearing up towards a publication!
- gamma data with the gamma MCNP simulations.
- Comparison of NCD measurements and related simulation would be useful too.

Through comparing and correlating the simulations with PICO-2L and previous measurements for gamma fluxes, slow and fast neutrons, and understanding the radioactive contamination of the materials around the detector, a coherent model for the radiation environment in the SNOLAB

We carried out a detailed simulation of neutron propagation for PICO-2L and comparison with data

Effort is on to understand and characterize other backgrounds. Comparing the measured Nal

