

AmBe Source Calibrations in SNO+ Partial Scintillator Phase

Ph.D. Candidate Jamie Grove

Supervisor: Dr. Christine Kraus

SNOLAB Introduction to Jamie

CONI

annie Grove

SNOLAB Introduction to SNO+

- SNO+ is located 2km underground (6000 w.m.e) in Creighton mine, Sudbury Ontario, Canada.
- The next generation of the Sudbury Neutrino Observatory (SNO).

SNOLAB Introduction to SNO+

- 6m radius acrylic vessel (AV)
- 9m radius stainless steel structure, which houses ~9600 PMTs (PSUP)
- 1700 tonnes of inner shielding ultra-pure water (UPW)
- 5300 tonnes outer shielding UPW in the 26m tall by 22m length SNO cavern lined with Urylon

SNOLAB Introduction to SNO+: SNO+ Goals and Phases

- SNG Nucleon decay
 - Water detection of reactor antineutrinos
- SNO · Low energy solar neutrinos (pep and CNO cycles)
 - Geo and reactor antineutrinos
 - Supernova
 - Scintillator calibration and verification of scintillator optical model and detector response
 - $0\nu\beta\beta$ -decay of ¹³⁰Te

SNOLAB Introduction to Calibrations in SNO+

Calibration goals:

- Validate response at energies for $0\nu\beta\beta$ -decay, low energy solar neutrinos, reactor antineutrinos, and geoneutrinos
- Validate position reconstruction
- Quantify PMT response and timing
- Accomplished via optical and radioactive source deployments, both internally and externally.

SNOLAB Introduction to Calibrations in SNO+

- Internal source deployments are done via a system of ropes and the umbilical retrieval mechanism (URM).
- Umbilical cable caries optical fibers, gas tubes, and wires for the PMTs for tagged source.
- Source position is adjusted using the side ropes.

• External deployment carried out via guide tubes that pass outside the AV.

SNAB AmBe Source Signal

- ²⁴¹Am decays via α emission
- The α induces a ⁹Be(α , n)¹²C reaction

 ${}^9\mathrm{Be} + \alpha \to n + {}^{12}\mathrm{C}^*$

- The ${}^{12}C^*$ de-excites and produces a 4.4 MeV $\gamma \sim 60\%$ of the time.
- Neutron is thermally captured on a hydrogen atom and produces a 2.2 MeV γ

SNOLAB AmBe Source Signal

- 4.4 MeV γ is released within ns
- 2.2 MeV γ is released ~200 μ s
- Able to use a coincidence trigger on the time difference, Δt, between the 4.4 MeV γ and the 2.2 MeV γ of the captured neutron.

00 0000 0 **SNAB** AmBe Source Partial Scintillator Deployments

Date	# of runs	Deployed	Scintillator
January 15, 2020	17	External	Partial (~20%)
January 16, 2020	7	External	Partial (~20%)
August 4, 2020	3	External	Partial (~50%)
August 18, 2020	12	External	Partial (~50%)
September 15, 2020	5	External	Partial (~50%)
September 16, 2020	7	External	Partial (~50%)
April 23, 2021	6	External	Full
May 22, 2021	8	External	Full

$$F(\mathbf{t}) = N \cdot R_1 (P \cdot E \cdot (\lambda + R_2) e^{-(\lambda + R_2)\mathbf{t}} + (1 - P \cdot E) \cdot R_2 e^{-R_2 \mathbf{t}}$$

Water Data results: Neutron capture time of 208.2 μ s

Neutron detection efficiency of 46%

[2] Yan Liu et al.

SNAB Detector Response: PMT Offset and Timing

• Hit time residuals are critical to

- Position reconstruction validation (event fitting, vertex fitting).
- Background rejection (single site vs, multi-site deposition).
- Time offset of each PMT is caused by individual delays in the electronics.

$$t_{res}^i \equiv t_{hit}^i - t_0 - t_{flight}^i$$

 t_0 - global event time, relative to the trigger

 $t_{\rm hit}$ - hit time

 $t_{\rm flight}$ - calculated time of flight, using the maximum likelihood position fit and vertex fitters on energy depositions

[5] Jack Dunger and Steven D. Biller

- Validation of position reconstruction.
- Analysis project:
 - Bayesian analysis to calculate the AmBe source rate at different positions
 - Neutron detection efficiency

$${}^{9}\mathrm{Be} + \alpha \to n + {}^{12}\mathrm{C}^{*}$$

- Branching ratio of the ¹²C de-excitation
- Cross sectional area of detector to flux from AmBe source
- AV refractive index
- AmBe source strength is ~1683 kBq and 62 Hz neutron rate

SNAB Future Work

- Nhit distributions and light yield studies
 - PPO concentration proportional to the # photons / MeV
 - Energy reconstruction
- Cross section of neutron capture on hydrogen and carbon
- Potential Cherenkov light
 - Potential for directional analysis
 - Understanding the mechanisms of $0\nu\beta\beta$ -decay

SNOLAB Conclusion

- Multiple deployments of the AmBe source externally during the partial and full scintillator phase.
- Look into the analysis of the mean capture time, and neutron detection efficiency.
- Verification of the position reconstruction
 - Hit time residuals: difference in calculated time of flight based on position fitting and event trigger
 - Sanity check of AmBe source rate calculation at various source positions.
- Framework of future analysis

SNOLAB References

[1] – Calibration Hardware Research and Development for SNO+, Matthew R. Walker

https://www.researchgate.net/publication/262911707 Calibration Hardware Research and Development for SNO

- [2] Neutron Detection in the SNO+ Water Phase, Y. Liu, J. Grove et al. (for the SNO+ Collaboration) https://arxiv.org/abs/1808.07020
- [3] Status of the SNO+ Experiment, talk at CAP 2021, TS4-2 June 8, Ryan Bayes https://indico.cern.ch/event/985448/contributions/4295799/
- [4] *Calibration of the SNO+ experiment,* J. Maneira et al. (for the SNO+ Collaboration) <u>https://iopscience.iop.org/article/10.1088/1742-6596/888/1/012247</u>
- [5] Multi-site Event Discrimination in Large Liquid Scintillation Detectors, Jack Dunger and Steven D. Biller <u>https://arxiv.org/abs/1904.00440</u>
- [6] Development, characterisation, and deployment of the SNO+ liquid scintillator, Ben Tam and the SNO+ Collaboration <u>https://iopscience.iop.org/article/10.1088/1748-0221/16/05/P05009/pdf</u>
- [7] Status of Juno Experiment, talk at International Workshop on Neutrino Telescopes, 2019, A. Paolini https://indico.cern.ch/event/768000/contributions/3275073/attachments/1815708/2967448/Paoloni JUNO.pdf

SNoLAB Extra Slides

.... 00 0000 0 00

- N: Normalization (run time \times histogram binning)
- R_1 : Rate of single candidate prompt events
- P: Probability of selecting a true 4.4 MeV γ , $P(\gamma|4.4MeV)$
- E: Neutron detection efficiency
- $\implies P \cdot E$: Neutron capture efficiency
- $\lambda :$ Neutron capture time
- R_2 : Rate of single candidate delayed events

SNoLAB Fitting Neutron Capture Time, Δt

 $-(\lambda + R_2)t$ $((1 - P \cdot E) \cdot R_2 e^{-R_2 t})$ $F(\mathbf{t}) = N \cdot R_1 (P \cdot E \cdot (\lambda) + R_2) e^{-\frac{1}{2}}$

 $P \cdot E \cdot \lambda e^{-(\lambda + R_2)t}$

True – True event

Fake – Fake event

SNAB Fitting Neutron Capture Time, Δt

$$F(t) = N \cdot R_1 (P \cdot E \cdot (\lambda + R_2)e^{-(\lambda + R_2)t}) + (1 - P \cdot E) \cdot R_2 e^{-R_2 t}$$

$$P \cdot E \cdot R_2 e^{-(R_2 + \lambda)t}$$

$$True - Fake event$$

SNOLAB Introduction to Calibrations in SNO+

- SNO+ has a number of installed and deployed calibration sources.
 - Installed: A LED light-injection system via installed optical fibres on the PSUP.
 - Deployed: A variety of optical and radioactive sources.

Table 1. Deployed cambration sources in SNO+.			
Source	Tagged source?	Information	
Laserball	Yes	Optical (quasi uniform diffuser)	
Supernova source	Yes	Optical (fast pulsed generator for laserball)	
Cherenkov	Yes	Optical (⁸ Li betas on acrylic)	
$^{16}\mathrm{N}$	Yes	Gamma (6.1 MeV)	
$^{60}\mathrm{Co}$	Yes	Gamma $(1.1, 1.3 \text{ MeV})$	
24 Na	Yes	Gamma (2.7, 1.3 MeV)	
AmBe	Yes^1	Neutrons, gamma $(2.2, 4.4 \text{ MeV})$	
$^{57}\mathrm{Co}$	No	Gamma (122 keV)	
$^{48}\mathrm{Sc}$	No	Gamma $(1.0, 1.1, 1.3 \text{ MeV})$	

Table 1. Deployed calibration sources in SNO+.

1: Using the coincidence between neutrons and gammas in the majority of the decays.

[4] J Maneira et al

SNAB Detector Response: Hit Time Residuals

- Hit time residuals are critical to
 - Position reconstruction validation (event fitting, vertex fitting).
 - Background rejection (single site vs, multi-site deposition).
- Time offset of each PMT is caused by individual delays in the electronics.

 $t^i_{res}\equiv t^i_{hit}-t_0-t^i_{flight}$

 t_{0} - global event time, relative to the trigger

 $t_{\rm hit}$ - hit time

 $t_{\rm flight}$ - calculated time of flight, using the maximum likelihood position fit and vertex fitters on energy depositions

[5] Jack Dunger and Steven D. Biller

SNOTAB Scintillation Light

- Scintillator phase: 780 tonnes Linear Alkyl Benzene (LAB) and ~2g/L 2,5-diphenyloxazole (PPO)
 - It's long time stability
 - Compatibility with the acrylic
 - High purity levels
 - Long attenuation and scattering length
 - High light yield
 - Linear response in energy
 - High flash point
 - Environmentally safe (non-toxic)
 - PPO advantage of low light absorption of metals in region of interest for $0\nu\beta\beta$ -decay

SNOLAB Scintillation Light

- Scintillator phase: 780 tonnes LAB and ~2g/L (PPO)
- Emission mechanism that depends on the excitation and subsequent deexcitation of benzene rings
- The structure has singlet (S₀, S₁, ..) and triplet states (T₁, T₂, ...)
- The singlet de-excitation and subsequent fluorescence is fast (nsec).
- Goal: maximize light yield and transparency, optimize emission times, minimize self-absorption, and tune the emission spectra to match the quantum efficiency curves of the observing PMTs

