

1TGE

A Tonne-Scale ⁷⁶Ge Neutrinoless Double-Beta Decay Experiment

David Radford

Physics Division, Oak Ridge National Laboratory

SNOLAB Future Projects Workshop

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

- Motivation:
 - Neutrinoless double-beta decay
 - Exposure and background requirements
- The MAJORANA DEMONSTRATOR
 - Design
 - Status
 - Expected background rates
- Path to the tonne-scale
 - Advantages of ⁷⁶Ge
 - GERDA and design alternatives
 - Cost and schedule

Neutrinoless Double-Beta Decay

0vββ decay requires:

- Neutrinos have non-zero mass
 - "Wrong-handed" helicity admixture ~ m_i/E_{vi}
- Lepton number violation
 - No experimental evidence that Lepton number must be conserved
 (*i.e.* allowed based on general SM principles, such as electroweak-isospin conservation and renormalizability)

Neutrinoless Double-Beta Decay

If observed, $0\nu\beta\beta$ decay would:

- Show that neutrinos are Majorana fermions
- Demonstrate that the fundamental symmetry of lepton number is violated
- Provide plausible scenarios for the origin of the baryon asymmetry of the universe
- Offer a potential reason for the light masses of v's compared to that of the charged fermions
- Allow a model-dependent method of measuring neutrino mass

$0\nu\beta\beta$ Decay Rate and $< m_{\beta\beta} >$

- Decay rate depends on nuclear processes and on effective neutrino mass $<\!m_{\beta\beta}\!>$

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2$$

- <m_{\beta\beta}> depends directly on the assumed form of LNV interactions

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

$0\nu\beta\beta$ Decay Rate and $< m_{\beta\beta} >$

Plot assumes LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

Sensitivity for Inverted Hierarchy?

- What is needed to reach sensitivities of $T_{1/2} \sim 10^{26} 10^{27}$ y?
 - Expect signals of 1 count / tonne / year for half-lives of ~10²⁷ years ($< m\beta\beta > ~ 15 \text{ meV}$)
- What would convince one that 0vββ has been discovered?
- Need signal-to-background ratio of 1:1 or better
 - Best background rates to date is ~40 to 140 c/t/y/ROI
 - Next generation (tonne-scale) experiments must have goals of ~ 1 c/t/y/ROI

Tonne-Scale Sensitivity

About ten tonne-years of exposure and background rates of ~ 1 c/t/y needed to probe entire region of inverted mass hierarchy

۰

Tonne-Scale Sensitivity

 About ten tonne-years of exposure and background rates of ~ 1 c/t/y needed to probe entire region of inverted mass hierarchy

Advantages for ⁷⁶Ge

⁷⁶Ge offers an excellent combination of capabilities and sensitivities.

- Ge as both source and detector
- Intrinsic high-purity Ge diodes
- Favorable nuclear matrix element
 <M^{0v}>=2.4 [Rod06]
- Reasonably slow $2\nu\beta\beta$ rate (T_{1/2} ~ 1.4 × 10²¹ y)
- Demonstrated ability to enrich from natural 7.8% to 86%

- Excellent energy resolution 0.16% at 2.039 MeV
- Powerful background rejection
 Segmentation, granularity, timing, pulse shape discrimination
- Well-understood technologies
 - Commercial Ge diodes
 - Large Ge arrays (GRETINA, Gammasphere)
 - Point contact detectors

The Majorana Demonstrator (MJD)

- Primary goal is to show that we can reach the ultra-low backgrounds required to justify a tonne-scale ^{enr}Ge 0vββ experiment
- Secondary goals:
 - Demonstrate scalable modular construction and reliable operation of multidetector cryostats
 - Test Klapdor-Kleingrothaus claim
 - Search for low-energy dark matter (light WIMPs, axions, ...)
 - Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from international collaborators.
 - ~ 30 kg ^{enr}Ge + ~ 10 kg ^{nat}Ge detectors, in two cryostats
 - Ultrapure materials; copper that has been electroformed and machined underground
 - Compact passive and active shields
 - At the 4850-foot level of SURF, Lead, SD
 - Construction scheduled for completion in 2015

MJD Detectors

- P-type Point Contact (PPC) HPGe detectors
- Mounted in "strings" of 4 or 5 detectors each
- Enriched detectors are ~ 1 kg each
- Superb pulse-shape discrimination against multi-site events

MJD Cryostats and Shield

- Three Steps
 - Prototype Cryostat^{*} (2 strings, ^{nat}Ge)
 - Cryostat 1 (3 strings ^{enr}Ge & 4 strings ^{nat}Ge)
 - Cryostat 2 (7 strings enrGe)

 * Same design as Cryos 1 & 2, but fabricated using OFHC Cu (non-electroformed) components.

MJD Cryostats and Shield

- Commissioning dates Three Steps (Estimated) Prototype Cryostat^{*} (2 strings, ^{nat}Ge) (Summer 2013) Cryostat 1 (3 strings ^{enr}Ge & 4 strings ^{nat}Ge) (Winter 2013) Cryostat 2 (7 strings ^{enr}Ge) (Fall 2014) Pressure monitor & relief LN dewar Radon Veto Poly Condenser Shield Enclosure **Panels** Thermosyphon Cold plate Lead Bricks Ballast ta Inner Cu Vacuum vessel Shield Vacuum Detector strings system Outer Cu Shield
 - * Same design as Cryos 1 & 2, but fabricated using OFHC Cu (non-electroformed) components.

Background Rejection

- I have
- In addition to an active muon veto, an array of Ge detectors allows other means of discriminating against background events

Ultra-Pure Copper

- Slow electroforming in ~ 12 large baths to produce ultra-pure copper
- Electroforming and machining both done underground to avoid cosmogenics
- A sizable expense for feedstock, acids, etc.
- E-beam welding currently done on surface; would be UG for 1TGe

- MJD UG site is Sanford Underground Research Laboratory
 - Main MJD lab at 4850L Davis Campus, beneficial occupancy in May 2012
 - Operating Temporary Cleanroom Facility (TCR) at 4850L Ross Campus since Spring 2011

The Majorana Demonstrator

MJD Status

- Simulations analyzing data from detector acceptance systems and also string data from string test cryostat (STC) system
- Infrastructure smooth daily operations at SURF
- Assay significant improvements in assay sensitivity, meet requirements
- Electroformed Cu 75% of the electroformed Cu is in hand, cryostat 1 material complete and fabrication nearly complete, cleaning/etching going smoothly
- Enriched Ge 42.5 kg delivered, high yield of reduction from oxide and purification, currently recycling material from ORTEC
- Detectors 11 kg of enriched detectors UG, improved string assembly and cables, prototype string testing underway
- Cryostats String Test cryostats (STC) and pumping system operational, prototype cryostat operating and loaded with first test string
- Shield Authorized to proceed with shield, all lead bricks cleaned, veto components on site
- DAQ Detector and STC DAQ systems in place and operational

Demonstrator Background Budget

J. Detwiler, MJ CD4 Background Criteria Report

Background Model Fit of R&D Detector

Geant4 simulations to determine efficiencies for contamination to deposit energy in our detectors

50k CPU hours

8k+ runs, 40+ contaminants, 56 components, 21 materials

MJD Spectrum - 2 years of running

Simulated spectra, 40 kg yrs, detector resolution applied

MJD Spectrum - 2 years of running

Simulated spectra, 40 kg yrs, detector resolution applied

MJD Spectrum - 2 years of running

Simulated spectra, 60 kg yrs, detector resolution + all cuts applied

GERDA Phases I & II

Located at Gran Sasso, Italy Individual detectors submersed in LAr

• Phase I

18 kg of 86% ⁷⁶Ge enriched P-type semi-coax detectors

Data-taking recently completed KKDC result excluded at 99% Background achieved: 40 counts/ROI/t/y

 Phase II additional ~20 kg of ⁷⁶Ge N-type segmented detectors

Goal: show feasibility for tonne scale experiment Background goal: 4 counts/ROI/t/y

Physics data taking of phase II should start in 2013-14

MAJORANA DEMONSTRATOR and GERDA

- ⁷⁶Ge modules in electroformed Cu cryostat, Cu / Pb passive shield
- 4π plastic scintillator μ veto
- DEMONSTRATOR: 30 kg ⁷⁶Ge and 10 kg ^{nat}Ge PPC xtals

- ⁷⁶Ge array submersed in LAr
- Water Cherenkov µ veto
- Phase I: ~18 kg (H-M/IGEX xtals)
- Phase II: +20 kg segmented xtals

Joint Cooperative Agreement:

Open exchange of knowledge & technologies (e.g. MaGe, R&D) Intention to merge for larger scale 1-tonne exp. Select best techniques developed and tested in GERDA and MAJORANA

Tonne-Scale 0vββ Experiment

- Working together with GERDA towards the establishment of a single international ⁷⁶Ge 0vββ collaboration
- Envision a phased, stepwise implementation; $e.g. 250 \rightarrow 500 \rightarrow 1000 \text{ kg}$
- Moving forward predicated on *demonstration* of projected backgrounds by MJD and/or GERDA
- Anticipate down-select of best technologies, based on results of the two experiments
- During 2014 both GERDA Phase II and MJD Cryo 1 should be collecting data

- MAJORANA collaboration awarded a "Solicitation 4" grant from NSF (FY10-12) to contribute to preliminary design of DUSEL/SURF
- Defined two baseline experimental configurations (based on MJD and GERDA), and also a hybrid approach. Developed facility requirements, determined amount of space needed for the experiment, produced scientific justification explaining depth requirements, developed preliminary cost, workforce & timeline estimates
- R&D aimed at retiring technical risks associated with scaling up: Ge recycling, thermal analysis of larger detector arrays in vacuum cryostats, simulations of alternative shields

Baseline Experimental Configurations

Compact Two shields, each with 8 EFCu vacuum cryostats

Cryogenic Vessel

Diameter of water tank:

- ~11 m for LAr,
- ~15 m for LN (shown)

1TGe Preliminary Design Concepts

- MAJORANA DEMONSTRATOR type Compact Shield
- ⁷⁶Ge modules in compact electroformed Cu cryostat, Cu / Pb passive shield
- 4π plastic scintillator μ veto

GERDA type LAr Shield

- ⁷⁶Ge array submersed in LAr
- Use LAr as Compton suppression and veto
- Water Cherenkov µ veto

D. Radford, Majorana

Possible SNOLAB Compact Layout

Possible SNOLAB Liquid Shield Layout

Diameter of water tank: ~ 11 – 15 m

Hybrid: Vacuum cryostats in liquid scintillator or water

- Required purity of scintillator or water is within the bounds of what has previously been achieved
- Could fit inside the Cryopit

- 30kg x 4 x 7 = 840 kg nominal (longer strings for 1T)
- Overall size is ~1.6m tall x 1.6m diameter

Compact Linear Shield

- $30 \text{kg} \times 2 \times 8 = 480 \text{kg}$ nominal as shown.
- Stretch to 4x8, 2x16, or double-sided unit for 1T, depending on facility layout
- Overall enclosure is ~ 10m long for 2x8 system

- Both configurations can adequately suppress external radiation, and have similar estimates of background rates from internal sources (crystals, mounts, etc.)
- Cryogenic Vessel requires more space
- Compact Shield may need to be sited deeper to achieve desired CR background rate.
- Cryogenic Vessel approach is more technically complex

Ton-scale technology down-select will be driven in large part by the background suppression performance achieved the Majorana Demonstrator and GERDA Phase II.

Depth Requirement for Compact Shield

Scaled from Mei & Hime (2006) Phys. Rev. D73, 053004

- Depth requirement for cryogenic vessel configuration is less stringent, especially if LN is chosen for the cryogen
- Some remaining uncertainty; efficiency of EM veto of µ-induced neutrons may be better than assumed here

1TGe Spaces and Requirements

Space	Power	Water	Ventilation	Тетр	Rn air	Clean room	IT needs	Other
Assembly room	Ave: 28 kW	High purity DI water			3 Bq/m ³	class 1000 or better	100 Mbs LAN	Compressed air, LN transport
Control Room	Ave: 42kW UPS: 4.2 kW			19-23 deg C	3 Bq/m ³		full IT + storage	
Cu/Pb Detector	included in assembly room	High purity water	LN exhaust	19-23 deg C	3 Bq/m ³	class 2000	100 Mbs LAN	need strong floor , compresed air
LAr Detector	included in assembly room	High purity water purification system	LN exhaust	19-23 deg C	3 Bq/m ³	class 2000	100 Mbs LAN	

1TGe Spaces and Requirements

Space	Power	Water	Ventilation	Temp		Clean room	IT needs	Other
Electroform Lab	136 kW UPS 5kW	Industrial tap water + HP DI water	exhaust Hydrogen from EF baths	19-23 (15%-60% humid)	3 Bq/m ³	class 2000, airlock entry	remote control and internet	spill containment lining - compressed air - Hazmat transport
Cu Cleaning lab	28 kW	HP water		19-23 (15%-60% humid)	1 Bq/m ³	class 100	remote control and internet	Hazmat transport
Machine Shop	107 kW peak 45 kW ave	HP water	30,000 cfm	Under investigation	3 Bq/m ³	class <10000	remote control and internet	compressed air
Storage Area				max 50% humid				
Ge Detector Fabrication Lab	125 kW	DI: 5 gal/min tap: 75k gal/yr cooling :125 gal/min	exhaust LN + HN03+HF from hoods	normal lab env.	1 Bq/m ³	<10,000, might need an area 100	remote control and internet	compressed air - Hazmat transport- need LN
Ge Purification Lab	250kW	DI: 5 gal/min tap: 250k gal/ yr cooling: 125 gal/min	same	same	1 Bq/m ³	lab 10,000 + 100 room	remote control and internet	compressed air

Material Transport and LN Consumption

LN Needs

- Cover gas for E-forming baths, gloveboxes
- Test cryostats
- Detector Modules
- Total: 200 L/day during construction, 430 L/day during operation

Cage Trips (based on SURF cage)

Shield Configuration	Cage trips	Notes
Compact	180	130 for Pb bricks
Cryogenic Vessel (LAr)	280	~ 150 for cryogen loading
Water only	100	
Liquid Scintillator	1000	~900 trips for LS

Major Hazards and Safety Issues

Cryogens

- LAr/water shield configuration requires up to 50 kiloliter cryostat immersed in water tank
- Flooding hazard if water tank fails
- Oxygen deficiency / asphyxiation hazard if cryogen handling system fails
- Explosive hazard: need to be able to drain water tank quickly if cryostat fails
- Chemical Hazards
 - Electroforming and Ge labs use hydrofluoric, sulfuric and nitric acids

1TGe Projected Timeline

- Technology down-select will be based on 1TGe R&D, GERDA Phase II, and MJD. Currently working with GERDA to define the process.
- 1TGe management will be defined based on participating institutions

Conclusion and Summary

- The ultimate goal of the MJ collaboration is to field a tonnescale ⁷⁶Ge 0vββ decay search
- The Demonstrator aims to show that we can reach the ultralow backgrounds required to justify the large experiment
 - Construction scheduled for completion in FY15
- Working towards an international collaboration and funding agencies to field the 1TGe expt.
 - US DOE contribution ~ \$250M? Work in progress...
 - Funding decision process is likely to be lengthy
- SNOLAB offers an ideal location for such an experiment
- Two classes of possible shield designs; down-select expected within 5 years
- Construction could in principle begin as early as 2018

Black Hills State University, Spearfish, SD Kara Keeter

Duke University, Durham, North Carolina , and TUNL Matthew Busch, James Esterline, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia Viktor Brudanin, Slava Egorov, K. Gusey, Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley Nicolas Abgrall, Mark Amman, Paul Barton, Yuen-Dat Chan, Alex Hegai, Paul Luke, Ryan Martin, Susanne Mertens, Alan Poon, Kai Vetter, Harold Yaver

Los Alamos National Laboratory, Los Alamos, New Mexico

Melissa Boswell, Steven Elliott,, Johnny Goett, Keith Rielage, Larry Rodriguez, Michael Ronquest, Harry Salazar, Wenqin Xu

North Carolina State University, Raleigh, North Carolina and TUNL Dustin Combs, Lance Leviner, David G. Phillips II, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee

Fred Bertrand, Greg Capps, Alfredo Galindo-Uribarri, Kim Jeskie, David Radford, Robert Varner, Brandon White, Chang-Hong Yu

Osaka University, Osaka, Japan Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji Pacific Northwest National Laboratory, Richland, Washington Estanislao Aguayo, Jim Fast, Eric Hoppe, Richard T. Kouzes, Brian LaFerriere, John Orrell, Nicole Overman, Doug Reid, Aleksandr Soin

> Shanghai Jiaotong University, Shanghai, China James Loach

South Dakota School of Mines and Technology, Rapid City, South Dakota Adam Caldwell, Cabot-Ann Christofferson, Stanley Howard, Anne-Marie Suriano, Jared Thompson

> Tennessee Tech University, Cookeville, Tennessee Mary Kidd

University of Alberta, Edmonton, Alberta Aksel Hallin

University of North Carolina, Chapel Hill, North Carolina and TUNL Florian Fraenkle, Graham K. Giovanetti, Matthew P. Green, Reyco Henning, Mark Howe, Sean MacMullin, Benjamin Shanks, Christopher O' Shaughnessy, Jacqueline Strain, Kris Vorren, John F. Wilkerson

> *University of South Carolina, Columbia, South Carolina* Frank Avignone, Vince Guiseppe, Clint Wiseman

University of South Dakota, Vermillion, South Dakota Nathan Snyder

University of Tennessee, Knoxville, Tennessee Yuri Efremenko, Sergey Vasilyev

University of Washington, Seattle, Washington

Tom Burritt, Clara Cuesta, Jason Detwiler, Peter J. Doe, Julieta Gruszko, Greg Harper, Jonathan Leon, David Peterson, R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel

Spare Slides

Enriched Detectors Underground

Recent Progress

Why search for $0v\beta\beta$?

- 0vββ decay probes fundamental questions
 - Neutrino properties: The only practical technique to determine if neutrinos are their own anti-particles (Majorana particles)
 - Lepton number violation (LNV): Might Leptogenesis be the explanation for the observed matter antimatter asymmetry?
 - The observation of $0\nu\beta\beta$ would demonstrate LNV and the Majorana nature of the v
- If $0v\beta\beta$ is observed
 - Provides a promising laboratory method for determining the absolute neutrino mass scale that is complementary to other neutrino mass measurement techniques
 - Measurements in a series of different isotopes can potentially help reveal the nature of the LNVprocess(es)
 - Extraction of v mass and understanding the LNV process(es) will require significant reliance on both nuclear and particle physics

The Majorana Demonstrator

a factor

Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from international collaborators.

- Goals: Demonstrate backgrounds low enough to justify building a tonne scale experiment.
 - Establish feasibility to construct & field modular arrays of Ge detectors.
 - Test Klapdor-Kleingrothaus claim.
 - Low-energy dark matter (light WIMPs, axions, ...) searches.
- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) 3 counts/ROI/t/y (after analysis cuts) scales to 1 count/ROI/t/y for a tonne experiment
- 40-kg of Ge detectors (KPP of at at least 30-kg)
 - At least 15-kg of 86% enriched ⁷⁶Ge crystals & up to 15-kg of ^{nat}Ge
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

1TGe Facilities

- Cu electroforming and shop facilities at 4850 (already developed for MJD).
- Ideal lab location, with reduced risk from background will be at the 7400' level. (Estimate of ~22 x better reduction in μ-induced n backgrounds over 4850L. If located at 4850, then will need to study larger shield.)

Compact Shield

Liquid Ar / Water Shield

Alternative Shield Simulations

- S Andrew
- Required purity of scintillator or water is within the bounds of what has been achieved by Borexino/SNO, and is independent of the size of the tank
- An active veto can relax the purity requirements by a factor of 2 to 3.

1TGe Preliminary Project Schedule

 Parametric estimate based on schedules developed for MJD and GERDA experiments, with MJD the primary source

Description	Start	Finish	Duration (months)	DOE CD
Pre-conceptual R&D	10/2009	9/2013	48	CD-0 Q1 FY14
Conceptual Design	10/2013	9/2014	12	CD-1 Q1 FY15
Results from GERDA Phase II & the Majorana Demonstrator		2016		
Preliminary Design	10/2014	9/2016	24	CD-2, 3A Q1 FY17
Final Design	10/2016	9/2017	12	CD-3 Q1 FY18
Procurement, Fabrication, Assembly	10/2016	9/2020	48	
Actual Installation (Staged)	10/2017	3/2021	42	
Commissioning (Staged)	10/2018	9/2021	36	
Ready for Operations (1 st module)	4/2019			CD-4 Q3 FY19
Operations (all modules)	10/2021	9/2025	60	CD-4 Q1 FY21

1TGe Preliminary Cost Estimate

- Parametric estimate based on actual costs for MJD and GERDA experiments, with MJD the primary source
- Procurement costs generally scaled in linear fashion, except where cost reductions can be expected
- 30% contingency on MJD-based estimates, 50% on all others

Option	Min TPC (\$M)	Max TPC (\$M)		
Homestake 4850L	214	231		
Homestake 7400L	206	231		
SNOLAB 6800L	210	235		

TPC Walk-up	Cost (\$ks)
UG Crystal Fabrication	15,000
LAr Tank and shield	10,000
Rn mitigation	1,500

Major Procurements/Activities	Cost (\$ks)
Host Lab Infrastructure	2,000
Materials & Assay	2,100
Ge Procurement/Enrichment	105,000
Detector Fabrication	21,400
Detector Modules	4,000
Electroforming	1,500
Mechanical Systems	8400
DAQ	5400
Project Labor	18,500