CLEAN Detection of Dark Matter & Low-Energy Neutrinos

SNOLAB Workshop August 21, 2013 SNOLAB

Andrew Hime Physics Division, MS H803 Los Alamos National Laboratory Los Alamos, NM 87545

10

Dark Matter in the Coming Decade – Complementary Paths to Discovery arXiv:1305.1605

Conclusions

° We likely need to get to very large (> 10 tonne) target masses whilst maintaining ever smaller levels of radioactive background (<0.1 events/tonne/year) to discover WIMP dark matter.

° Intrinsic neutrino backgrounds limit how far existing technologies can go (eg. elastic scattering of pp-solar neutrinos limit LXe to $\sim 10^{-47}$ cm²). Pulse-shape discrimination in LAr avoids this problem.

° Target exchange from LAr to LNe *in the same detector* might prove vital in verifying a WIMP discovery.

° LNe might be the only viable means to provide a precision measurement of the *pp*-solar neutrino flux and thus θ_{12} .

° A massive, single-phase detector capable of target exchange between LAr and LNe could achieve all of the above.

Experimental Measurements of PSD in LAr

microCLEAN

DEAP-1

Extrapolating ³⁹Ar Leakage is Challenging

With a likelihood of particle type based on photon arrival times, we can do much better than simple " F_{prompt} ".

A. Hime

Three Noble Liquids

Parameter	LNe	LAr	LXe
Light Yield	25 photons/keV	40 photons/keV	42 photons/keV
Prompt Time Constant	2.2 ns	6 ns	2.2 ns
Late Time Constant	16 µs	1.6 µs	21 ns
Peak Wavelength	77 nm	128 nm	174 nm
Rayleigh Scattering Length	60 cm	90 cm	30 cm
Density (g/cm ³)	1.20	1.40	2.95
Boiling Point (K)	27.1	87.3	165.1
Electron Drift Velocity at 1kV/cm	2 cm/s	2 x 10 ⁵ cm/s	2 x 10 ⁵ cm/s

Three Noble Liquids

	MiniC	CLEAN	
Single-Phase		DEAP-3600	XMASS
₩		AN	
Parameter	LNe	LAr	LXe

I al ameter		LAI	LAU
Light Yield	25 photons/keV	40 photons/keV	42 photons/keV
Prompt Time Constant	2.2 ns	6 ns	2.2 ns
Late Time Constant	16 µs	1.6 µs	21 ns
Peak Wavelength	77 nm	128 nm	174 nm
Rayleigh Scattering Length	60 cm	90 cm	30 cm
Density (g/cm ³)	1.20	1.40	2.95
Boiling Point (K)	27.1	87.3	165.1
Electron Drift Velocity at 1kV/cm	2 cm/s	2 x 10 ⁵ cm/s	$2 \times 10^5 \text{ cm/s}$

Dual-Phase

DarkSide

ZEPLIN XENON LUX

D. N. McKinsey and J. M. Doyle, J. Low Temp. Phys. 118, 153 (2000).
D. N. McKinsey and K. J. Coakley, Astropart. Phys. 22, 355 (2005).
M. Boulay, J. Lidgard, and A. Hime, nucl-ex/0410025.
M. Boulay and A. Hime, Astropart. Phys. 25, 179 (2006).

Charge & Scintillation Yield in LAr

MiniCLEAN – Photon Budget

Parameter	Value	Light Yield p.e. / <u>keVee</u>	Note
Scintillation Yield (photons/keVee)	46.2±5.2		
PMT Efficiency	19±2 %	8.8±1.3	R5912-02MOD
TPB Coverage	93.4	8.2±1.2	Viewing 500 kg Target
TPB Re-Emission Efficiency	1.2±0.1	9.8±1.5	128 nm
Absorption in TPB	2 to 19 %	7.9 to 9.8	
Absorption in Acrylic	11.3 %	7.0 to 8.7	Attenuation Length is ~1 m at 400 nm
Absorption in Light Guide	12.3 %	6.1 to 7.6	Reflectivity is 98% at 420 nm
Resulting Light Yield		6.1 to 7.6	

Parameter	Value MiniCLEAN	Light Yield p.e. / <u>keVee</u>	Value CLEAN	Light Yield p.e. / <u>keVee</u>
Target Mass	500 kg		50000 kg	
Scintillation Yield (photons/keVee)	46.2±5.2		46.2±5.2	
PMT Efficiency	19±2 %	8.8±1.3	31±2 %	14.3±1.6
TPB Coverage	93.4	8.2±1.2	93.4	13.4±1.2
TPB Re-Emission Efficiency	1.2±0.1	9.8±1.5	1.2±0.1	16.0±1.5
Absorption in TPB	19 %	7.9	19 %	13.0
Absorption in Acrylic	11.3 %	7.0		13.0
Absorption in Light Guide	12.3 %	6.1	< 2 %	12.7

MiniCLEAN Modular Design

• 4π coverage to maximize light-yield at threshold ...

- 3D Position Reconstruction
- Particle-ID via Pulse-shape discrimination
- Radon-reduced assembly ...
- "Cold" design allows both LAr & LNe ...
- No electric fields ... PMTs only active component ...
- Fast signals ($\tau_3 = 1.6 \mu s$) avoid pulse-pileup in LAr ...

SNOLAB-Aug.21-2013

SNOLAB-Aug.21-2013

A. Hime

Model for a 45 tonne CLEAN Detector

D.-M. Mei, C. Zhang and A. Hime NIM A**606**, 651 (2009)

Hamamatsu R5912-02MOD

Raw Yield	499,000 yr⁻¹	1100 PMTs
Reconstructed	386,997 yr⁻¹	
Energy ROI	10,424 yr ⁻¹	12.5 – 25 keV _{ee}
Fiducial Volume	421 yr ⁻¹	d _{wall} > 55 cm M = 15,000 kg LAr
F _{prompt} + Timing	5.9 yr ⁻¹	
Active Veto	0.53 yr ⁻¹	Irreducible BGND

³⁹Ar Spike & Target Exchange in CLEAN

SNOLAB-Aug.21-2013

Thank You

Boston University

D. Gastler, E. Kearns, S. Linden

University of California – Berkeley

G.D. Orebi Gann

Los Alamos National Laboratory

M. Akashi-Ronquest, R. Bingham, R. Bourque, E. Flores, J. Griego, R. Hennings-Yeomans, A. Hime, S. Jaditz, F. Lopez, J. Oertel, K. Rielage, L. Rodriguez

Massachusetts Institute of Technology

J.A. Formaggio, J. Kelsey, J. Monroe, K. Palladino

National Institute of Standards and Technology (Boulder)

K. Coakley

University of New Mexico

M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Wang

University of North Carolina/TUNL

R. Henning, S. MacMullin

University of Pennsylvania

T. Caldwell, J.R. Klein, A. Latorre, A. Mastbaum, S. Seibert

Royal Holloway University London

A. Butcher, J. Monroe, J. Nikkel, J. Walding

SNOLAB Institute

F.A. Duncan, C. Jillings, I. Lawson, O. Li, P. Liimatainen, K. McFarlane, T. O'Malley

University of South Dakota

V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang

Syracuse University

R. Bunker, Y. Chen, R.W. Schnee, B. Wang

Yale University

D.N. McKinsey