UNIVERSITY OF ALBERTA

Introduction

Particle astrophysics requires the development of detectors with extreme levels of purity and careful control of backgrounds. Radon emanation is a large potential source for background radiation. In particular, Radon 222 decays into its daughters such as Polonium 218 and Bismuth 214, emitting many alphas and betas as it does so.

At the University of Alberta, a low radon cleanroom has been built to construct and test equipment used in underground experiments. This cleanroom features a unique radon stripping system, as well as a high precision radon monitoring system. Together these aspects create a one-of-a-kind low radon cleanroom that will lead to revolutionary techniques in low background equipment.

Figure 1. The construction and building process of the DEAP 3600 flow guides inside the cleanroom.

Radon Stripping System

The radon stripping system is designed based on techniques previously used in the Modane Underground Laboratory [1] and in fabricating the nylon vessel for Borexino [2]. The system is designed to allow both cold-column radon adsorption, but can also be run in pressure-swing or vacuum-swing modes. We use an Atlas Copco GA30+ 30kW water cooled compressor that supplies 5m³/min of compressed air, which is then filtered and dried to -70° C dew point by a desiccant drier. For low temperature adsorption, a custom built 9kW process chiller serves to cool the air to -65° C, which is then passed through carbon columns. The carbon columns are where radon absorption occurs, leaving us with a final rate of approximately 0.02Bq/m³. There are 5 stainless steel columns, each filled with 200kg of coconut carbon. The air is then warmed up in an air-toair heat exchanger. This particular heat exchanger will also serve to cool incoming air. The now warm, low radon air is then fed through ducting into the cleanroom [3].

Figure 2. On the left is a schematic of the equipment used to strip radon from the air. The image on the right displays the cylinders used in the radon stripping process.

Low Radon Cleanroom at the University of Alberta

Berta Beltran¹, Paul Davis¹, Arthur Firmino¹, Darren Grant¹, <u>Aksel Hallin¹</u>, Stephen Hanchurak¹, Carsten Krauss¹, Shengli Liu¹, Ken McFarlane², Richard Soluk¹, Pooja Woosaree¹

> ¹University of Alberta, Edmonton AB Canada T6G 2G7 ²SNOLAB, Sudbury ON Canada P3Y 1N2

$$\frac{dN_R}{dt} = E - \left(\lambda_R + \frac{F_o}{V}\right)N_R + F_i n_{R,i}$$
(1)

$$\frac{dn_{218}}{dt} = n_R \lambda_R - n_{218} \lambda_{218} - \frac{F_o n_{218}}{V} - \frac{F_{HEPA} n_{218}}{V}$$
(2)

$$\frac{dN'_{218}}{dt} = \varepsilon_{218}F_{0}n_{218} - N'_{218}\lambda_{218}$$
(3)

	ov 14 Radon	Calibration Data	with Math	ematical Model		
				Parameters:Emanation = 40 atomAir InFlow = Air OutFDetector Efficiency =HEPA Flow = 0.109 mRoom Volume = 122.Radon ConcentrationRadon Decay Rate = 0Po218 Decay Rate = 0	ns·hr ⁻¹ low = 0.03 m ³ ·s ⁻¹ 0.14% 1 ³ ·s ⁻¹ 7432 m ³ 1 Incoming = 0 ato 1.0000020982180)ms∙m⁻³) s⁻¹
				Po218 Decay Nate - (5.0037293	
				Number of deca	ys of Po218 on	the detec
						
PM Fri 12/14 09:55	DPM Fri 11/14 11:55 PN	N Fri 12 14 01:55 AM Sat 12 15 03:55 Date (1	5 5 AM Sat 11 15 05:55	AM Sat 12 15 07:55 AM Sat 12 07:55 AM Sat 12	15 55 AM Sat 12/15	1
n purple a ed in the	are the cou cleanroom	nts of Polonium . The red line de	n 218 duri esignates	ng and after a rad the mathematica	don source I fit based o	was on
		differentialed	quations.			
14. 50 %	1. 121-3/2/201	C BASING BRIDE	107 State 31		NTC: -	at said
Incom	ning and Out	going Radon Acti	ivity from I	olonium 218 Rate	s	
•						
•						
						 ncominį
						 ncoming Dutgoing
						ncominę Jutgoinę
						ncoming Jutgoing
						ncoming Jutgoing
01-Mar	02-Mar 0	03-Mar 04-Mar	05-Mar Day Binc)	06-Mar 07-Mai	Ir C	ncoming Jutgoing 09-Ma
01-Mar	02-Mar 0	03-Mar 04-Mar Date (1	05-Mar Day Bins)	06-Mar 07-Mar		ncoming Jutgoing 09-Ma
01-Mar	02-Mar 0	v3-Mar 04-Mar Date (1 ivity of Poloniu	05-Mar Day Bins)	06-Mar 07-Mar	 C C C C C C 	ncoming Jutgoing 09-Ma
01-Mar	02-Mar 0 ving the act	v3-Mar 04-Mar Date (1 ivity of Poloniu channe	05-Mar Day Bins) Im 218 thr els.	06-Mar 07-Mar ough the incomi		ncoming Jutgoing 09-Ma
01-Mar	02-Mar 0 ving the act	v3-Mar 04-Mar Date (1 ivity of Poloniu channe	05-Mar Day Bins)	06-Mar 07-Mar ough the incomi		ncoming Jutgoing 09-Ma
01-Mar	02-Mar 0 ving the act	V3-Mar 04-Mar Date (1 ivity of Poloniu channe	05-Mar Day Bins) Im 218 thr els.	06-Mar 07-Mar ough the incomi		ncoming)utgoing 09-Ma
01-Mar	02-Mar 0 ving the act	3-Mar 04-Mar Date (1 ivity of Poloniu channe Conclu	05-Mar Day Bins) Im 218 thr els.	06-Mar 07-Mar ough the incomi		ncoming)utgoing 09-Ma

work well, and we have consistent radon levels of 0.3 Bq/m³. The dust levels in the room are also low, with measured values typically well below 100 particles/ft³, in which the particles measure less than 0.5µm.

The radon level is dominated by emanation from components within the room. We have been working to isolate and remove radon sources; which have improved our base radon rate by about a factor of two. We are continuing this program. We have not seen any correlation between radon rates in the room and changes in the exterior building air.

The first project to be completed in the cleanroom was the construction of acrylic flow guides for DEAP 3600, as seen in Figure 1. Future projects will include custom built proportional counters for low background measurements, amongst other low background radiation experiments.

References

[1] P. Loaiza, "Low Radioactivity at the Modane Underground Laboratory", AIP Conference Proceedings, Topical Workshop on Low Radioactivity Techniques (LRT 2004), p100

[2] A. Pocar, "Low Background Techniques for the Borexino Nylon Vessels", AIP Conference Proceedings, Topical Workshop on Low Radioactivity Techniques (LRT 2004), p153

[3] Grant D., et. al., "Low Radon Cleanroom at the University of Alberta", AIP Conference Proceedings, Topical Workshop on Low Radioactivity Techniques (LRT 2010), p161

