Low Background Counting At SNOLAB

Ian Lawson

Low Radioactivity Techniques 2010

Outline

•Description of the SNOLAB HPGe Counting System

- •Electrostatic (ESC) Counters
- •Alpha/Beta Counting System
- •Underground Radon Levels at SNOLAB
- •Future Low Background Counting Facilities

SNOLAB HPGe Detector

- •Establishment of the Low Background Gamma Facility @ SNOLAB in 2005.
- Motivation
 - Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO, SNO+, DEAP1, minCLEAN, PICASSO, EXO, ...
- •Constructed @ SNOLAB from an HPGe detector and its associated shielding located underground at 4600 ft level since 1997.
 - Counter manufactured by PGT.
 - Endcap diameter 83 mm.
 - Relative Efficiency is 55% wrt a 7.62 cm dia x 7.62 cm NaI(Tl) detector.
 - Resolution 1.8 keV FWHM.
- Shielding
 - 2 inches Cu + 8 inches Pb
 - Nitrogen purge at 2L/min to keep radon out.

SNOLAB HPGe Counter

Uranium Decay Chain

Uranium – Radium Gamma Intensities			A = 4n + 2						63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24 10 d	49.55 0.064 11 3.5 0. 910	U 238 4.468x10 [°] a	
										1001.03 0.837 766.38 0.294	Pa 234 [*] 1.17 m 6.7 h	2.269 98.2%	
	351.932 37.6 295.224 19.3 241.997 7.43 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	й рове β рове	Po 218 3.10(1) m 9980% 0020%	- 511 0.076	Rn 222 3.8235(3)d	- 186.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a	
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	8 609.312 46.1 8 1764.494 154 8 1120.287 151 8 1238.110 579 8 2204.21 508 8 768.356 494 6 1377.669 4.00 8 934.061 3.03	a none Bi 214 19.9(4) m 0.276% 99.724%	DODE	At 218 1.5 s								
	46.539 4.25	Pb 210 22.3(2) a	799.7 0.0104	Po 214 164.3(20) us									
		DODE	Bi 210 5.013 d										
		Pb 206 stable		Po 210 138.376 d									

LRT 2010

Thorium Decay Chain

Thorium A = 4n Gamma Intensities					13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	4 63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a				
								911.204 25.8 968.971 15.8 338.320 11.27 964.766 4.99 463.004 4.40 794.947 4.25 338.320 3.89	Ac 228 6.15 h			
	238.632 43.3 300.087 3.28 115.183 0.592	РЬ 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	- \$49.76 0.114	Rn 220 55.6(1) s	- 240.986 4.10	Ra 224 3.66(4) d	84.373 1.220 215.983 0.254 131.613 0.131 166.410 0.104	Th 228 1.9116(16) a		
2614.533 99.0 583.191 84.5 510.77 22.6 860.564 12.42 277.351 6.31 763.13 1.81	Tl 208 3.053(4) m	α 39.858 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727.330 6.58 1620.50 1.49 785.37 1.102								
		Pb 208 stable		Po 212 299(2) ns								

Other Interesting Isotopes

Usually Present:

Unshielded and Shielded Spectra

28/08/2010

LRT 2010

8

Background Comparison

Unshielded Versus Shielded Activity

Isotope	Activity Unshielded Crystal(Bq)	Activity Shielded Crystal (Bq)
²³⁸ U	70.11 ± 1.64	0.00128 ± 0.00016
²³² Th	36.99 ± 1.21	0.00141 ± 0.00016
⁴⁰ K	1723.33 ± 88.02	0.0189 ± 0.0017
¹³⁷ Cs	1.00 ± 0.15	0.0020 ± 0.0002
⁶⁰ Co	0.023 ± 0.052	0.00036 ± 0.00005

Unshielded Measurements done by Yoram Nir-EL

HPGe Detector Sensitivity

Isotope	1 Bq/kg	1 Bq/kg 1 ppb Ser Sta Sar		Typical for Earth's Crust
²³⁸ U	81 ppb	12 mBq/kg	~ 1 mBq/kg ~ 0.1 ppb	37 Bq/kg 3 ppm
²³² Th	246 ppb	4.1 mBq/kg	~ 1.5 mBq/kg ~ 0.3 ppb	45 Bq/kg 11 ppm
⁴⁰ K	32 ppm	0.031 mBq/kg	~ 21 mBq/kg ~ 0.7 ppm	800 Bq/kg 2.5 %

Better sensitivities have been achieved for specialized very large samples combined with an extremely long counting period:

²³⁸U: 0.009 ppb,
²³²Th: 0.02 ppb,
⁴⁰K: 87 ppb

28/08/2010

LRT 2010

Calibration Spectrum

Detector Efficiency From Mixed Calibration Sample

The efficiency is scaled to individual samples using a Geant based Monte Marlo which takes into account the sample components, to account for the density difference between the calibration source and the sample, and the sample geometry.

28/08/2010

LRT 2010

Typical Stainless Steel Spectrum

DEAP 1 sample - steel bolts, nuts, wa Sum sp. total + filter3

Measurements To Date For Each Experiment

Experiment	2006	2007	2008	2009	2010 (Jan-Aug)	Total	
SNO	2	7	0	2	0	11	
SNO+	0	2	18	14	13	47	
SNOLAB	7	3	0	0	3	13	
EXO	1	1	0	0	0	2	
MiniCLEAN	5	1	9	18	8	41	
DEAP	8	8	12	10	5	43	
HALO	0	0	0	2	2	4	
PICASSO	1	1	4	3	0	9	
DM-ICE					3	3	
Total	24	23	43	49	34	173	
Calibrations &Tests	30	34	14	9	1	88	
8/08/2010			LRT 2010			14	

Electrostatic Counting System

Measures ²²²Rn, ²²⁴Ra and ²²⁶Ra levels.

Sensitivity Levels are: ²²²Rn: 10⁻¹⁴ gU/g ²²⁴Ra: 10⁻¹⁵ gTh/g ²²⁶Ra: 10⁻¹⁶ gU/g

Work is ongoing to improve sensitivity even further.

Alpha Beta Counting System

Currently located at the SNOLAB hot lab at LU so that spike sources can be measured.

Sensitivity for ²³⁸U and ²³²Th is ~ 1 mBq assuming that the chains are in equilibrium.

SNOLAB Radon Levels Without Fresh Air

Radon levels: $15.94 \pm 3.09 \text{ pCi/L}$ or $589.8 \pm 114.3 \text{ Bq/m}^3$.

LRT 2010

Radon Level Annual Cycle

The annual cycle corresponds to 363.21 +- 29.73 days, the expected cycle is one year.

LRT 2010

Achievable Radon Levels

Using Compressed Air Supplied From Surface

Radon levels: 0.086 ± 0.004 pCi/L or 3.18 ± 0.15 Bq/m³.

To use this air, specialized filters have to be used to ensure that all particulate matter is removed from the air before it is used.

To achieve lower levels of radon, radon scrubbing systems would have to deployed. 28/08/2010 LRT 2010

Future Low Background Counting At SNOLAB (I)

 Two new low background high purity Ge Counters have been ordered from Canberra

One counter is a p-type coaxial detector and the other is a well detector. They are expected to arrive at the end of 2010.

Canberra will supply the low background shielding for the well detector while SNOLAB will use copper and lead currently in storage together with additional low background material to be acquired.

Will measure existing lead to determine ²¹⁰Pb content, this will help us understand the current backgrounds in existing detector and to determine requirements for the new detector.

Future Low Background Counting At SNOLAB (II)

Neutron background measurements have been started in the SNOLAB expansion (PICASSO).

System uses 4 2m-long ³He proportional counters from SNO.

Sensitivity to neutrons is 0.00003 mRem/hr, therefore they will observe neutrons even at very low levels.

Counters can be deployed inside shielding structures to determine how effective the shielding is at stopping neutrons.

Previous measurements indicate that the flux varies from 4.8 x 10⁻⁶ to 1×10^{-5} neutrons/cm²/s. Shielding In Place

No shielding

Summary

 SNOLAB HPGe low background counting system has run continuously for the past five years and has counted 173 samples so far.

Counting queue usually remains at between 6 and 10 samples, this sometimes limits when samples can be counted in a timely manner.

The counter(s) is available for all SNOLAB experiments and can be made available to non-SNOLAB experiments upon request.

 Two new Ge counting systems are expected to arrive by the end 2010.

The new counters should allow much higher sensitivity, effort underway to ensure all materials are low background. The well detector will be used for very specialized small samples such as vapourized acrylic.

- Specialized counting can be done using the ESC or Alpha-Beta Counters.
- Neutron backgrounds can be determined throughout the underground lab and the effectives of neutron shields can be tested.