Radioactivity Screening at SNOLAB

Ian Lawson

SNOLAB Workshop V August 22, 2006

Outline

•Overview of SNOLAB Germanium Detector

•Underground radioactivity (no Ge detector shielding)

•Results after Ge detector enclosed in shielding

•Recent results

•Summary

SNOLAB Workshop V, August 22, 2006

SNOLAB HPGE Detector Setup

•Initial Establishment of the Low Background Gamma Facility @ SNOLAB in 2005

•Yoram Nir-El, Bruce Cleveland, Doug Hallman, Brian Morisette, Noel Gagnon and Ian Lawson

•Motivation

•Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO, DEAP1, EXO, ...

•Constructed @ SNOLAB from an HPGE detector and its associated shielding located underground at 4600 ft since 1997.

•Ge crystal refurbished in 2005 at PGT, in New Jersey and has been working well since its return to SNOLAB in April 2005.

•Future

•There is another Ge detector located at 4600 ft (originally located at a salt mine in Windsor) that has 3 crystals. This detector could allow us to increase measurement capability and possible precision with larger samples.

SNOLAB HPGE Detector Characteristics

•Manufacturer

• Princeton Gamma-Tech, Model Number IGC 5021

•Crystal dimensions

• 63mm x 67 mm

•Efficiency

•55%, relative to a 7.62 cm dia x 7.62 cm NaI(Tl) detector for 1332 kev γ -rays from a ⁶⁰Co source 25 cm from the face of the crystal

•Resolution

• 1.8 keV FWHM

•Shielding

• 2 inches Cu + 8 inches Pb

•End-cap diameter

- 83 mm
- •End-cap material
 - Electroformed Copper
- •Nitrogen flow rate to purge radon
 - •~2L/min

SNOLAB HPGE Detector

SNOLAB Workshop V, August 22, 2006

Page 5

Nitrogen flow meter

> Nitrogen bubbler

Detector HV Controller

SNOLAB Workshop V, August 22, 2006

Page 6

Sample Preparation

Marinelli Beaker

-The current beakers have a volume of 1 L. -The beakers are made out of polyethylene. -We have smaller beakers that are 250mL. These can be used for small and/or expensive samples. -Samples should be made to fit into the beaker so that as

much of the sample as possible is near the counter, it is preferable to crush the sample if possible.

AB

The Uranium Decay Chain

Several gammas are released when ²³⁸U decays to ²⁰⁶Pb. The more prominent gammas are used to measure the amount of ²³⁸U present in a substance.

These gammas are:

- 186.1 keV from ²²⁶Ra
- 295.21 keV from ²¹⁴Pb
- 351.92 keV from ²¹⁴Pb
- 609.31 keV from ²¹⁴Bi
- 1120.29 keV from ²¹⁴Bi
- 1764.53 keV from ²¹⁴Bi

In some substances we can also observe additional gammas:

- 63.29 keV from ²³⁴Th
- 92.50 keV from ²³⁴Th
- 1001.03 keV from ²³⁴mPa

The Thorium Decay Chain

Several gammas are released when ²³²Th decays to ²⁰⁸Pb. The more prominent gammas are used to measure the amount of ²³²Th present in a substance.

These gammas are:

- 238.63 keV from ²¹²Pb
- 300.09 keV from ²¹²Pb
- 583.19 keV from ²⁰⁸Tl
- 911.21 keV from ²²⁸Ac
- 2614.53 keV from ²⁰⁸Tl

Other Interesting Detectable Isotopes

Low background gamma conversion factors

Isotope	1 Bq/kg	1 ppb	Current	Typical for
			Sensitivity	Earth's Crust
²³⁸ U	81 ppb	12 mBq/kg	~ 1 mBq/kg	37 Bq/kg
			~ 0.1 ppb	3 ppm
²³² Th	246 ppb	4.1 mBq/kg	~ 1.5 mBq/kg	45 Bq/kg
			~ 0.3 ppb	11 ppm
⁴⁰ K	32 ppm	0.031 mBq/kg	~ 21 mBq/kg	800 Bq/kg
			~ 0.7 ppm	2.5 %

Sensitivities of SNOLAB Compared to some other Facilities

Isotope	SNOLAB	SOLO	LBCF Surface Facility	LBCF Underground Facility
²³⁸ U	1 mBq/kg	1 mBq/kg	9 mBq/kg	0.9 mBq/kg
	0.1 ppb	0.1 ppb	0.5 ppb	0.05 ppb
²³² Th	1.5 mBq/kg	0.5 mBq/kg 0.05 ppb	12 mBq/kg 2 pph	1.2 mBq/kg 0.2 ppb
40	21 mBa/kg	10 mBa/ka	2 pp	3.2 mBa/kg
K	0.7 ppm	0.25 ppm	1 ppm	0.1 ppm

SNO Laboratory Background Spectrum

(Unshielded detector located in the junction area, the volume of air in this area is

circulated by AHU4; the junction volume is 34330 ft³.)

SNOLAB Workshop V, August 22, 2006

Ian Lawson

Shielded Background Spectrum

Unshielded and Shielded Background Spectra

Page 15

Background Comparison

Unshielded Versus Shielded Ge Detector

Isotope	Activity Unshielded Crystal(Bq)	Activity Shielded Crystal (Bq)
²³⁸ U	70.11 ± 1.64	0.00131 ± 0.00021
²³² Th	36.99 ± 1.21	0.00147 ± 0.00019
⁴⁰ K	1723.33 ± 88.02	0.0213 ± 0.0024
¹³⁷ Cs	1.00 ± 0.15	0.0019 ± 0.0002
⁶⁰ Co	0.023 ± 0.052	0.00045 ± 0.00007

Unshielded Measurements done by Yoram Nir-EL

Page 16

Mixed Source Calibration Spectrum

Epoxy source made by AEA Technology QSA GmbH, density is 1.5 g/cm^3

SNOLAB Workshop V, August 22, 2006

SN

AB

Page 17

Ian Lawson

Ge Detector Efficiency from Mixed Calibration Source

Plot by James Loach

KCl Calibration Sample

SNOLAB Workshop V, August 22, 2006

Ian Lawson

DEAP1 #1 Stainless Steel Bolts and Nuts Spectrum

SNOLAB Workshop V, August 22, 2006 AB

Ian Lawson

DEAP1 #2, Aluminum Sections Spectrum

Detailed Results of the Aluminum Sample

	Element	Energy(keV)	Activity (mBq)
	²¹⁴ Pb	295.21	100.7 ± 40.3
8	²¹⁴ Pb	351.92	48.8 ± 18.5
°U	²¹⁴ Bi	609.31	47.8 ± 14.7
	²¹⁴ Bi	1120.29	76.3 ± 29.5
	²¹⁴ Bi	1764.49	79.5 ± 42.3
	²¹² Pb	238.63	1975.8 ± 112.7
⁵ Th	²¹² Pb	300.09	1576.4 ± 263.5
	²⁰⁸ TI	583.19	1565.9 ± 103.2
	²²⁸ Ac	911.21	47.0 ± 19.9
	²⁰⁸ TI	2614.53	1869.7 ± 144.2
40 K	⁴⁰ K	1460.83	119.8 ± 49.3
³⁸ U	²³⁴ Th	63.29	62774.6 ± 27054.1
	²³⁴ Th	92.59	10976 ± 1146.4
	^{234m} Pa	1001.03	14921.5 ± 1655.9

238

235

238

Circuit Board Spectrum

total1 round circuit boards, 250.0gm; July 6 Sum sp. total + filter3

Paint Spectrum

filter Mixed epoxy paint, Interseal 670HS light base w 670HS low temp

Counts

A Few Ge Detector Sample Results

Material	²³² Th	238U	⁴⁰ K	
	(ppb)	(ppb)	(%)	
Paint, CC EP100 (SNO floor paint)	57.02 ± 3.14	26.28 ± 1.20	2.50 ± 0.13	
Paint, Interzone 954 (white)	76.80 ± 3.43	88.24 ± 2.55	0.267±0.015	
Paint, Interzone 670HS	81.16±4.30	157.91 ± 4.37	0.489 ± 0.027	
BM Epoxy mastic	249.91±7.34	127.97±3.17	0.074 ± 0.005	
Plastic Lumber(HDPE)	19.80±0.97	9.34 ± 0.38	0.060 ± 0.004	
S.S. bolts, nuts	$1.29{\pm}0.14$	0.479±0.041	0.011±0.073	9.78±0.60 mBq/kg ⁶⁰ Co
Aluminum plating	$248.4{\pm}1.1$	788.77±12.88	<0.03 ppm	6.59±0.28 ppb ²³⁵ U
Circuit Boards	5309±135	1359.0±34.0	1.00±0.06	

Other Background Results

Several rock, shotcrete and concrete samples have been assayed from the new laboratory using a Ge counter at U. of Guelph and ICP-MS methods.

Material	²³² Th	238	⁴⁰ K
	(ppm)	(ppm)	(%)
Average rock results	5.56 ± 0.57	1.11 ± 0.15	1.01 ± 0.12
Shotcrete	15.24 ±0.14	2.46 ± 0.09	1.78 ± 0.05
Concrete	15.38 ±0.40	2.41 ± 0.03	1.75 ± 0.05

Ge Detector Results

Comparison of Ge Counting and ICP-MS

Element	Rock Sample 8		Rock Sample 11	
	Ge	ICP-MS	Ge	ICP-MS
K (%)	1.09 ± 0.01	0.97	1.08 ± 0.03	1.02
U (ppm)	1.24 ±0.16	1.21	1.09 ± 0.03	1.14
Th (ppm)	5.44 ±0.37	5.54	5.72 ± 0.05	5.19

Element	Shotcrete Sample 15		Concrete Sample 14	
	Ge	ICP-MS	Ge	ICP-MS
K (%)	1.78 ± 0.05	1.76	1.75 ± 0.05	1.61
U (ppm)	2.46 ±0.09	2.56	2.41 ± 0.03	2.38
Th (ppm)	15.24 ±0.14	14.90	15.38 ± 0.40	13.10

Radon Background in SNO Laboratory

•Radon continuously monitored for the last year using the RAD7 radon monitor from Durridge. •Average radon levels in the underground lab is 3.41 ± 0.17 pCi/L or 126.2 ± 6.29 Bq/m³. •Radon monitoring is expected to continue to see if there are seasonal effects, these are hard to observe due to power interruptions, air handler 5 outages and air flow changes from INCO.

SNOLAB Workshop V, August 22, 2006

Summary

- SNOLAB low background counting facility is operational and currently counting samples and is available upon request through Bruce Cleveland or myself.
- The sensitivities for U,Th and K are:
 - U ~1 mBq/kg
 - Th ~ 1.5 mBq/kg
 - K ~ 21 mBq/kg
- Currently able to screen samples up to 1 L.
- Studying microphonics to reduce this noise to increase detector live time
- Future counting, the 3 crystal detector at 4600 ft level could be moved to 6800 ft level. This would allow counting of larger samples and increased sensitivity.

