Low Background Counting Facilities At SNOLAB

Ian Lawson SNOLAB

Low Radioactivity Techniques 2013

10/04/2013

Motivation for Low Background Counters

Current Facilities in Operation at SNOLAB

- → PGT Ge detector
- Electrostatic Counters (ESCs)
- → Alpha/Beta Counters

•Characterizing A New Germanium Well Detector

•Future Low Background Counters and Facilities

Motivation

- Many of the experiments currently searching for dark matter, studying properties of neutrinos or searching for neutrinoless double-beta decay require very low levels of radioactive backgrounds both in their own construction materials and in the surrounding environment.
- These low background levels are required so that the experiments can achieve the required sensitivities for their searches.
- SNOLAB has several facilities which are used to directly measure these radioactive backgrounds.
- The backgrounds in question are on the order of 1 mBq or 1 ppb for ²³⁸U, ²³²Th and ²³⁵U and 1 ppm for ⁴⁰K, or better.
- The problem backgrounds can include gammas, alphas and neutrons or resulting interaction products.
- The goal is to measure these backgrounds and then to reduce them to be as low as reasonably achievable.

SNOLAB

Surface Facility

Underground Laboratory

2km overburden (6000mwe)

300m

SNOLAB

Existing SNOLAB PGT HPGe Counter

SNOLAB PGT HPGe Detector Specifications

•Establishment of the Low Background Gamma Facility @ SNOLAB in 2005.

Motivation

• Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO, SNO+, DEAP/CLEAN, PICASSO, EXO, ... Also survey materials for the DM-ICE and DRIFT experiments.

•Constructed @ SNOLAB from a HPGe detector and its associated shielding located underground at 4600 ft level since 1997.

• Counter manufactured by PGT in 1992,

• Endcap diameter: 83 mm,

• Crystal volume: 210 cm³,

• Relative Efficiency is 55% wrt a 7.62 cm dia x 7.62 cm NaI(Tl) detector,

• Resolution 1.8 keV FWHM.

Shielding

• 2 inches Cu + 8 inches Pb

• Nitrogen purge at 2L/min to keep radon out, as the lab radon levels are 150 Bq/m³.

Unshielded and Shielded Spectra

10/04/2013

LRT 2013

PGT HPGe Typical Detector Sensitivity (for a standard 1L or 1 kg sample)

Isotope	1 Bq/kg	1 ppb	Sensitivity for Standard Size Samples	Typical for Earth's Crust
²³⁸ U	81 ppb	12 mBq/kg	~ 1 mBq/kg ~ 0.1 ppb	37 Bq/kg 3 ppm
²³² Th	246 ppb	4.1 mBq/kg	~ 1.5 mBq/kg ~ 0.3 ppb	45 Bq/kg 11 ppm
⁴⁰ K	32 ppm	0.031 mBq/kg	~ 21 mBq/kg ~ 0.7 ppm	800 Bq/kg 2.5 %

Increased sensitivities have been achieved for specialized very large samples, on the order of 10 kg, combined with a long counting period: ²³⁸U: 0.009 ppb, ²³²Th: 0.02 ppb, ⁴⁰K: 87.0 ppb

Massuramente To Date For Fach Experiment											
	weas	uremer	115 10	Dale		su ⊏xh	benme	nt			
Experiment	2006	2007	2008	2009	2010	2011	2012	2013	Total		
SNO	2	7	0	2	0	0	0	0	11		
SNO+	0	2	18	14	15	35	5	3	92		
SNOLAB	7	3	0	0	9	6	17	2	44		
EXO	1	1	0	0	2	1	0	0	5		
MiniCLEAN	5	1	9	18	8	3	7	3	54		
DEAP	8	8	12	10	8	15	18	4	83		
HALO	0	0	0	2	3	1	1	0	7		
PICASSO	1	1	4	3	0	0	0	0	9		
DM-ICE / DRIFT					9	9	5	0	23		
COUPP					1	15	17	4	37		
DAMIC							1	3	4		
Total	24	23	43	49	34	85	71	19	369		
Calibrations &Tests	30	34	14	9	4	3	11	3	108		
Samples in Detector Queue: - 16, counting time per sample averages one week. - the queue is usually very long, so additional counters are very important.											
10/04/2013 LRT 2013 10											

SNOLAB Data Repository

SNOLAB maintains a database in a spreadsheet format for each experiment.

The data is shown in units of mBq/kg and pp(b or m).

The table shows data from the standard gamma searches: ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K ¹³⁷Cs, ⁶⁰Co.

While searching for the above gammas, we also search for any other peaks in the spectrum between 100 keV and 2800 keV, For example, ⁵⁴Mn is usually observed in steel. These are also included in the spreadsheet for each sample.

The database is available to all SNOLAB users and can be made available to others upon request as it is password protected, contact lan.Lawson@snolab.ca or Bruce.Cleveland@snolab.ca.

Electrostatic Counting System

Measures ²²²Rn, ²²⁴Ra and ²²⁶Ra levels.

Sensitivity Levels are: ²²²Rn: 10⁻¹⁴ gU/g ²²⁴Ra: 10⁻¹⁵ gTh/g ²²⁶Ra: 10⁻¹⁶ gU/g

Work is ongoing to improve sensitivity even further.

9 counters located at SNOLAB,1 on loan to LBL (EXO),1 on loan to U of A (DEAP).

Alpha Beta Counting System

Currently located at the SNOLAB hot lab at LU so that spike sources can be measured.

Sensitivity for 238 U and 232 Th is ~ 1 mBq assuming that the chains are in equilibrium.

Future Low Background Counting Facilities At SNOLAB Canberra Well Detector

Two new low background high purity Ge Counters were ordered from Canberra

One counter is a p-type coaxial detector and the other is a p-type well detector. Canberra also supplied a specially built shield for the well detector.

However, the well detector would not fit into the supplied shield as the base of the well detector was too large for the copper shielding disks and the vacuum tube connecting the dewar with the detector was too short for the shielding thickness.

The well detector was sent back to Canberra and was rebuilt to fit the shielding, the detector is now back at SNOLAB and is being characterized.

Canberra Well Detector at SNOLAB

Canberra Well Detector at SNOLAB

Detector Volume: 300 cm³

Sample Well

Sample Bottle Volume is 3 ml

10/04/2013

16

Canberra Well Detector Status

Background run completed (38 days and ongoing).
²³⁸U 0.029 ± 0.058 decays per day (10.59 ± 21.17 decays per year)
²³²Th 0.048 ± 0.063 decays per day (17.52 ± 23.00 decays per year)
⁴⁰K 0.0 ± 0.02 decays per day (0.0 ± 7.3 decays per year)
²¹⁰Pb not observed

Total backgrounds at the level of 30 counts / year.

- Calibration sources approved by SNOLAB and efficiency measurements are in progress.
- Samples for SNO+ and DEAP have been counted, final results awaiting efficiency and background measurement.
- Ability to measure small samples, sensitive to gamma energies between 10 keV and 600 keV, therefore can measure several gammas from ²³⁸U, ²³⁵U and ²³²Th but not very sensitive to ⁴⁰K.
- Ability to directly measure ²¹⁰Pb.

10/04/2013

Concentrated sample of leachate from SNO+ Acrylic Vessel

Future Low Background Counting At SNOLAB Canberra Coax Detector

The well detector shielding was slightly modified to allow the coax detector to fit so that it could be tested while the well detector was rebuilt.

The coax detector was ran inside the well detector shielding to characterize the backgrounds in the hope the detector had backgrounds less than the PGT detector.

However, it was determined that the coax detector is anything but low in backgrounds. It has substantial amounts of ²³²Th and ²³⁵U, the other backgrounds are similar to those observed from the PGT counter.

Future Low Background Counting At SNOLAB Canberra Coax Detector

The background levels for a true ultra-low background detector should be no more than 100 counts/year from all backgrounds.

The activities present are:

- ²²⁸Th progeny at 30 counts/day
- ²²⁸Ra progeny at 30 counts/day
- ²³⁸U progeny at 500-600 counts/day, although below ²²⁶Ra the rate is only about 5 counts/day.
- ⁴⁰K at 18 counts/day

The detector was dismantled by Canberra and the pieces will be counted at SNOLAB to determine if there is a smoking gun causing the high background rate.

10/04/2013

Canberra Coax Detector Components

CRYSTAL SUPPORT COMPONENTS OF EGPC 100-220-R N° 54204 LRT 2013

SNOLAB Low Background Laboratory (under construction)

A new dedicated space is being constructed at SNOLAB for a low background lab located in the South Drift (former refuge station).

This drift is isolated from other drifts and is inaccessible to large equipment. This will help reduce micro-seismic noise which can effect Ge detectors.

Increased air flow and perhaps other radon reduction techniques will be used. It is known that the compressed air from surface has substantially less radon than the lab air and can be used to reduce radon levels from 135-150 Bq/m³ to 1-5 Bq/m³.

Space can accommodate up to 5 Ge detectors, XRF, radon emanation chamber and have room for other types of counters which would benefit from low-cosmic ray background.

Future Low Background Counting Lab

Future Low Background Counting Lab

10/04/2013

LRT 2013

24

Future Low Background Counting Lab

Goal is to have new space ready by end of 2013, so far the room has been painted to help keep the space clean.

Requires installation of new walls, electrical utilities and air conditioning.

Relocate Canberra Well detector, XRF and Emanation Chamber.

PGT detector to be moved over the longer term and only after Canberra Coax detector is declared ready for use.

Additional space reserved for future counting facilities.

Summary

• SNOLAB PGT HPGe low background counting system has run continuously for the past since 2005 and has counted 369 samples so far.

Counting queue is long at \sim 16 samples, this sometimes limits when samples can be counted in a timely manner.

The counter is available for all SNOLAB experiments and can be made available to non-SNOLAB experiments upon request (eg. DM-ICE, DRIFT).

 Two Canberra Ge detectors were delivered to SNOLAB, but each need refurbishing, one was not built to specifications and the other is not ultra-low background.

The new counters should allow much higher sensitivity, effort underway to ensure all materials are low background. The well detector will be used for very specialized small samples such as vapourized acrylic and can search for ²¹⁰Pb.

- Specialized counting can be done using the ESC or Alpha-Beta Counters and materials can be emanated for Radon.
- New low background counting lab is being constructed at SNOLAB, final preparations are now underway.

10/04/2013

Extra Slides Follow

²³²Th Decay Chain

Thorium A = 4n Gamma Intensities							13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a		
								911.204 25.8 968.971 15.8 338.320 11.2 964.766 4.99 463.004 4.40 794.947 4.25 209.253 3.89	Ac 228 6.15 h			
	238.632 43.3 300.087 3.28 115.183 0.592	Pb 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	549.76 0.114	Rn 220 55.6(1) s	240.986 4.10	Ra 224 3,66(4) d	84,373 1.220 215,983 0.254 131,613 0.131 166,410 0.104	Th 228 1.9116(16) a		
2614,533 99.0 583,191 84.5 510.77 22.6 860,564 12,42 277,351 6,31 763,13 1,81	Tl 208 3.053(4) m	α 39.858 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727,330 6.58 1620.50 1.49 785.37 1.102								
		Pb 208 stable	-	Po 212 299(2) ns								

²³⁵U Decay Chain

Actinium A Gamma Intensities				A = 4n + 3					25.64 14.5 84.214 6.6	Th 231 1.0633 d	185.715 57.2 143.76 10.96 163.33 5.08 205.311 5.01 109.16 1.54 202.11 1.08	U 235 7.028x10 ⁸ a	
		293.54 1000 271.23 55 517.63 19 833.00 14 563.70 13 401.81 10	Bi 215 7.6 m	α none β none	At 219 56 s ~97% ~3%	$ \begin{matrix} \alpha & \text{none} \\ \beta & 50.13 & 36.0 \\ \beta & 79.72 & 9.1 \end{matrix} \\ \hline \\ \beta & 234.81 & 3.0 \\ \beta & 49.89 & 2.7 \end{matrix} $	Fr 223 21.8 m	α 160.26 0.0059 β none	Ac 227 21.773(3) a 1.380% 98.620%	27.36 10.29 300.07 2.47 302.65 2.19 283.69 1.70 330.06 1.40 19.00 0.374	Pa 231 3.276x10 ⁴ a		
	404.853 3.78 832.01 3.52 427.088 1.76	Pb 211 36.1(2) m	438.8 ~0.040	Po 215 1.781(4) ms	271.23 10.8 401.81 6.37	Rn 219 3.96(1) s	269.459 13.70 154.21 5.62 323.871 3.93 144.232 3.22 338.281 2.79 445.031 1.27	Ra 223 11.435(4) d	235.971 12.3 50.13 8.26 256.25 7.01 329.85 2.69 300.00 2.32 286.12 1.53	Th 227 18.72(2) d			
897.80 0.260 569.702 0.00159 328.12 0.00140	TI 207 4.77 m	α 351.059 12.91 β none	Bi 211 2.14(2) m 99.724% 0.278%										
		Pb 207 stable	897.80 0.561 569.702 0.5	Po 211 516 ms									

²³⁸U Decay Chain

Uranium – Radium Gamma Intensities				A = 4	4n + 2				63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064 113.5 0.010	U 238 4.468x10 ⁹ a	
										1001.03 0.837 766.38 0.294	Pa 234 [*] 1.17 m 6.7 h	2.269 98.2%	
	351.932 37.6 295.224 19.3 241.997 7.48 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α none β none	Po 218 3.10(1) m	511 0.076	Rn 222 3.8235(3) d	186.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a	
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	8 609.312 46.1 8 1764.494 15.4 9 1120.287 15.1 9 1238.110 5.79 9 2204.21 5.08 9 768.356 4.94 9 1377.669 4.00 9 430.061 103	α none Bi 214 19.9(4) m 0.276% 99.724%	none	At 218 1.5 s								
	46.539 4.25	Pb 210 22.3(2) a	799.7 0.0104	Po 214 164.3(20) us									
		none	Bi 210 5.013 d										
		Pb 206 stable	803.10 0.00121	Po 210 138,376 d									

10/04/2013

Other Interesting Isotopes

