Low Background Counting At SNOLAB

Ian Lawson

AARM S4 Collaboration Meeting Minneapolis, Minnesota, June 22-23, 2012

June 22 & 23, 2012

AB

SN

Outline

•SNOLAB and description of the SNOLAB Low Background Gamma Counting System

•Other material screening and counting systems

- •Existing SNOLAB low background data repository
- •Status of new Canberra gamma counting systems
- •New low background underground lab

•Summary

SNOLAB

Surface Facility

Underground Laboratory

2km overburden (6000mwe)

300m

SN

AB

SNOLAB Low Background Counting System

- •Establishment of the Low Background Gamma Facility @ SNOLAB in 2005. The counter has run continuously since then.
- Motivation

ΔB

- Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO, SNO+, DEAP1, miniCLEAN, PICASSO, EXO, ... Have also assayed materials for DM-ICE and DRIFT.
- •Constructed @ SNOLAB from an HPGe detector and its associated shielding located underground at 4600 ft level since 1997.
 - Counter manufactured by PGT.
 - Endcap diameter 83 mm.
 - Relative Efficiency is 55% wrt a 7.62 cm dia x 7.62 cm NaI(Tl) detector.
 - Resolution 1.8 keV FWHM.
- Shielding
 - 2 inches Cu + 8 inches Pb
 - Nitrogen purge at 2L/min to keep radon out.

June 22 & 23, 2012

SNOLAB PGT HPGe Counter

Uranium Decay Chain

Uranium – Radium A = 4n + 2 Gamma Intensities									63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064 113.5 0.010	U 238 4 468x10 ⁹ a	
										1001.03 0.837 766.38 0.294	Pa 234 [*] 1.17 m 6.75	2.269 98.2%	
	351.932 37.6 295.224 19.3 241.997 7.48 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α попе β попе	Po 218 3.10(1) m 99304 00204	- 4 511 0.076	Rn 222 3.8235(3)d	- 186.211 3.59	Ra 226 1600(1) a	4 67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a	
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	8 609.312 46.4 3 1764.494 15.4 3 1120.287 15.1 3 1238.110 5.79 3 2204.21 508 3 768.356 4.94 6 1377.669 4.00 8 934.061 3.03	a none Bi 214 19.9(4) m 0.276% 99.724%		At 218 1.5 s								
	46.539 4.25	Pb 210 22.3(2) a	799.7 0.0104	Po 214 164.3(20) us									
		DODE	Bi 210 5.013 d										
		Pb 206 stable		Po 210 138.376 d									

June 22 & 23, 2012

SN

AB

Thorium Decay Chain

Th orium Gamma Intensities				A = 4n			13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	4 63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a		
								911.204 25.8 968.971 15.8 338.320 11.27 964.766 4.99 463.004 4.40 794.947 4.25 338.320 3.89	Ac 228 6.15 h			
	238.632 43.3 300.087 3.28 115.183 0.592	Pb 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	₄ \$49.76 0.114	Rn 220 55.6(1) s	- 4 240.986 4.10	Ra 224 3.66(4) d	84.373 1.220 215.983 0.254 131.613 0.131 166.410 0.104	Th 228 1.9116(16) a		
2614.533 99.0 583.191 84.5 510.77 22.6/ 860.564 12.42 277.351 6.31 763.13 1.81	Tl 208 3.053(4) m	α 39.858 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727,330 6.58 1620.50 1.49 785.37 1.102	40							
		Pb 208 stable	-	Po 212 299(2) ns								

SN

AB

Other Interesting Isotopes

SN

AB

Unshielded and Shielded Spectra

June 22 & 23, 2012

SN

AB

AARM S4

10

Background Comparison

Unshielded Versus Shielded Activity

Isotope	Activity Unshielded Crystal(Bq)	Activity Shielded Crystal (Bq)
²³⁸ U	70.11 ± 1.64	0.00128 ± 0.00016
²³² Th	36.99 ± 1.21	0.00141 ± 0.00016
⁴⁰ K	1723.33 ± 88.02	0.0189 ± 0.0017
¹³⁷ Cs	1.00 ± 0.15	0.0020 ± 0.0002
⁶⁰ Co	0.023 ± 0.052	0.00036 ± 0.00005

Unshielded Measurements done by Yoram Nir-EL

SN

AB

PGT HPGe Detector Sensitivity

Isotope	1 Bq/kg	1 ppb	Sensitivity for Standard Size Samples	Typical for Earth's Crust
²³⁸ U	81 ppb	12 mBq/kg	~ 1 mBq/kg ~ 0.1 ppb	37 Bq/kg 3 ppm
²³² Th	246 ppb	4.1 mBq/kg	~ 1.5 mBq/kg ~ 0.3 ppb	45 Bq/kg 11 ppm
⁴⁰ K	32 ppm	0.031 mBq/kg	~ 21 mBq/kg ~ 0.7 ppm	800 Bq/kg 2.5 %

Better sensitivities have been achieved for specialized very large samples combined with an extremely long counting period:

²³⁸U: 0.009 ppb,
²³²Th: 0.02 ppb,
⁴⁰K: 87 ppb

June 22 & 23, 2012

SN

B

Calibration Spectrum

New calibration standards are being proposed which have much longer half-lives to allow the calibration sample to be used for several years unlike most commercial multigamma calibration samples. Would be used to cross-calibrate PGT and Canberra detectors.

June 22 & 23, 2012

Detector Efficiency From Mixed Calibration Sample

The efficiency is scaled to individual samples using GEANT 4.9.4 which takes into account the sample components, to account for the density difference between the calibration source and the sample, and the sample geometry.

June 22 & 23, 2012

A B

Typical Stainless Steel Spectrum

DEAP 1 sample - steel bolts, nuts, wa Sum sp. total + filter3

Counts

SN

AB

June 22 & 23, 2012

Typical Efficiency Correction

SN

A B

Electrostatic Counting System

Measures ²²²Rn, ²²⁴Ra and ²²⁶Ra levels.

Sensitivity Levels are: ²²²Rn: 10⁻¹⁴ gU/g ²²⁴Ra: 10⁻¹⁵ gTh/g ²²⁶Ra: 10⁻¹⁶ gU/g

Work is ongoing to improve sensitivity even further.

9 counters located at SNOLAB,1 on loan to LBL,1 on loan to U of A,1 remains at U. of Guelph

Alpha Beta (Bi-Po) Counting System

Currently located at the SNOLAB hot lab at LU so that spike sources can be measured.

Sensitivity for ²³⁸U and ²³²Th is ~ 1 mBq assuming that the chains are in equilibrium.

Material Screening

Radon Emanation Chambers

- Used extensively for counting materials used in the SNO experiment.
- sensitivity ~50 decays per day.

ICP-MS

SN

- Association with facility at NRC (National Research Council)
 ICP-MS facility in Ottawa and with GeoLabs in Sudbury.
- NRC facility can be tuned to maximize sensitivity to U and Th at sub ppt levels. K limits to < 100 ppb.
 June 22 & 23, 2012

_

19

SNAAB

Measurements To Date For Each Experiment

Experiment	2006	2007	2008	2009	2010	2011	2012 (-Jun 17)	Total
SNO	2	7	0	2	0	0	0	11
SNO+	0	2	18	14	15	35	1	85
SNOLAB	7	3	0	0	9	6	10	35
EXO	1	1	0	0	2	1	0	5
MiniCLEAN	5	1	9	18	8	3	2	46
DEAP	8	8	12	10	8	15	2	63
HALO	0	0	0	2	3	1	1	7
PICASSO	1	1	4	3	0	0	0	9
DM-ICE / DRIFT					9	9	4	22
COUPP					1	15	8	24
Total	24	23	43	49	34	85	28	296
Calibrations &Tests	30	34	14	9	4	3	6	100

Samples in Detector Queue: - 19, which means up to 19 weeks or more of counting time! - the queue keeps getting longer, so the new counters are very important.

June 22 & 23, 2012

SN AB

SNOLAB Data Repository

											ener Vankil tek	in the second second	Concerni	ng tina manda														
																			2385er 186.1 bet/									
The Consistentian for the presided had been by						1 8q 138 U/g = 81 yes U (81 x 16* gU/g)				The 2004 damy shells provide weat any						2149-20121 and 30140 law												
							<u> </u>												31496-606.33, 1130.39, 1764.48 and 2006.31 larV									
								le ana ri k ke	- 241 pph 75	Can - 3	e ana	2				the 2027 hideoxy	date gam	on wellow	20176-100	10	2424.07 14	N.						
																					238Am 8 12	-	v					
The sale	in a biga ser salid in a	ny daughter	a in Ma 23814	208U - 202Th	chain only 5 K	e desir is in aga				le 4010 he -	32300 pph K	00300 -	an giù	ø				The still dee	-	ment want for	405-1410	a ww						
										Ng 238Ling	- 1.79 ppm 1	i la rese	an sug)				The 2384 decay	date gam	ne vet se	2394 143	79, 261	0.33 and 20	9.35 MV				
Sample Description	Norichar	Mass (g)	Line Time (dage)	Country Data Represental		2384/ Erm 2385e				2080 i ner 2007	•		2386			2307	•		475			1370		600+			Crossel	•
Background 1			61754		(any)	1.31		6.25					640 .	0.30	1.07	-	6.20	12.30		140	140	-5	6.30	648	-4	6407		
Emply Harinali Dealer																												
Resignand 3			6366	Aug 23, 2008	(mbg)	3.60	-	2.04					um .	- 13.07	2.40	-	108	30-30		130	1.80	-4	6.79	635	-4	6.38		
Emply Harinals Bealer				Sep 5, 2008																								
Background 3			36.737	0413, 3007	(ang)	1.36	-	0.44				٥	. Tet	0.805	1.07	-	048	18-40	-	400	1.70	-4	640	6.30	-4	6.14		
Completely Simply Detector				Cel 30, 2007																								
Relignant 4			30.784	Der 23, 2020	(mtu)	1.175	-	6.283				۰	. 103	- 0.400	1.130	-	6.348	15.30		120	1,000	-	6.300	0.340	-	6.089	The Name	•
Completely Employ Detector				Jan 11, 3010																							1.70 mbg - 1	1.00 mBq
Constituted Surfagement	Contribution of the State of th		97,354		(ang)	1208	-	6.263					178 .	0.040	1.313	-	6435	10.03	-	189	1.058	-	6.288	0.418	-	6.088		
					Additional Name		105-			The			34	16m														
						12.56.54	-	546.00	108 mBg	-	040	0.110	- pla															\neg
	The measurements of the samples balance lates the account of the lates proved shown in the same of the same balance lates.																											
INCLAS IN																												
Rample Description	Harkaur	Mass (g)	Line Time Magal	Country Data Representation			ann Fre Saer	•		saariina saarii			23	N		23275			6 72			13704			800.0		Crosset	
810481	Redealigney People Red	3256.7	1.266	Apr 23, 2004	(united)	336.48	-	34.79	305-40		235.27				332.76	-	13.79	77440.79	-	300 L 00	+3.33			4.00	-4	647		
Canadian Coolings 87500 Spring	23.30 Terrenets Data, Terrele			Apr 28, 2008	(₁₀₀ 4)	31.28 pph	-	1.31 ppk	24.74 (10)	-6	20.05 pph				17.42 ppb	-4	3.14 pph	2001.04 ppm	4	230-04 ppm								
	International Parts				1																							

Clarking T

Hanking Hanking Apr 28, 2001

Apr 28, 2008

fay 1, 200

May 2, 2008

1134

2473

1430.4

2.30 met

Add and such

1704.00

Induced State

INCLASS.

Name of A Post

INCLASE.

28.28 male | 248.74 mal

14,30

78,80 mile

3.43 mil

11.00

27.42

247.33

25.22 -----

842.02

NO.

DOM:

NA.

PUR.

SNOLAB Data Repository

SNOLAB maintains a database in a spreadsheet format for each experiment.

The data is shown in units of mBq/kg or pp(b or m).

The table shows data from the standard gamma searches: ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K ¹³⁷Cs, ⁶⁰Co.

While searching for the above gammas, we also search for any other peaks in the spectrum between 100 keV and 2800 keV, For example, ⁵⁴Mn is usually observed in steel. These are also included in the spreadsheet for each sample.

The database is available to all SNOLAB users and can be made available to others upon request as it is password protected, contact Ian.Lawson@snolab.ca or Bruce.Cleveland@snolab.ca.

Future Low Background Counting At SNOLAB

 Two new low background high purity Ge Counters were ordered from Canberra

One counter is a p-type coaxial detector and the other is a well detector. Canberra also supplied a specially built shield for the well detector.

However, the well detector would not fit in the supplied shielding setup as the base of the well detector was too large for the copper disks and the vacuum tube connecting the dewar with the detector was too short for the shielding thickness.

The well detector was sent back to Canberra to be rebuilt to fit the shielding, it has not been returned to SNOLAB yet.

The shielding was slightly modified to allow the coax detector to fit so that the coax detector could be tested.

Future Low Background Counting At SNOLAB

The well detector shielding was slightly modified to allow the coax detector to fit so that the coax detector could be tested.

The coax detector was then run inside the well detector shielding to characterize the backgrounds in the hope the detector has backgrounds less than the PGT detector, which we used as the basis for maximum background requirements.

However, it was determined that the coax detector is anything but low in backgrounds. It has substantial amounts of ²³²Th and ²³⁵U, the other backgrounds are similar to those observed from the PGT counter.

Future Low Background Counting At SNOLAB

The background levels for a true ultralow background detector should be no more than 100 counts/year from U and Th chain events.

The activities present are:

- ²²⁸Th progeny at 30 counts/day
- ²²⁸Ra progeny at 30 counts/day
- ²³⁸U progeny at 500-600 counts/day, although below ²²⁶Ra the rate is only about 5 counts/day.
- ⁴⁰K at 18 counts/day

Canberra has sent SNOLAB many components to determine where this background is coming from, but so far there is no smoking gun.

SNOLAB Low Background Laboratory (under construction)

A new dedicated space is being constructed at SNOLAB for a low background lab located in the South Drift (former refuge station).

This drift is somewhat isolated from other drifts and is inaccessible to large equipment (fork lift). This will help reduce micro-seismic noise which can effect Ge detectors.

Increased air flow and perhaps other radon reduction techniques will be used. It is known that the compressed air from surface has substantially less radon than the lab air and can be used to reduce radon levels from 135-150 Bq/m³ to 1-5 Bq/m³.

Space can accommodate 3-5 Ge detectors, XRF, radon emanation chamber and have room for other types of counters which would benefit from low-cosmic ray background.

AB

Summary

• SNOLAB PGT HPGe low background counting system has run continuously for the past since 2005 and has counted 296 samples so far.

Counting queue in unusually long at 19 samples, this sometimes limits when samples can be counted in a timely manner.

The counter(s) is available for all SNOLAB experiments and can be made available to non-SNOLAB experiments upon request.

 Two new Canberra Ge detectors were delivered to SNOLAB, but are now being refurbished since they are not ultra-low background as expected.

The new counters should allow much higher sensitivity, effort underway to ensure all materials are low background. The well detector will be used for very specialized small samples such as vapourized acrylic.

- Specialized counting can be done using the ESC or Alpha-Beta Counters and materials can be emanated for Radon.
- New low background counting lab is being constructed at SNOLAB, final preparations are now underway.