Low Background Measurement Capabilities at SNOLAB

Ian Lawson SNOLAB

2017 CAP Congress Queen's University

June 1, 2017

SN

AB

CAP 2017

- •Motivation Why do we need to measure radioactivity
- •Description of the SNOLAB Low Background Counting System
- Low Background Counting Some Results
- •Future Low Background Counting Facilities
- Radiopurity Database
- •Summary

SN

Motivation

- Experiments currently searching for dark matter, studying properties of neutrinos require very low levels of radioactive backgrounds both in their own construction materials and in the surrounding environment.
- These low background levels are required so that the experiments can achieve the required sensitivities for their searches.
- SNOLAB has several facilities which are used to directly measure these radioactive backgrounds.
- The backgrounds in question are on the order of 1 mBq or 1 ppb for ²³⁸U, ²³²Th and ²³⁵U and 1 ppm for ⁴⁰K, or better, measurements down to 1 ppt are now required for most new experiments under construction.
- The problem backgrounds can include gammas, alphas and neutrons or resulting interaction products.
- The goal is to measure these backgrounds and then to reduce them to be as low as reasonably achievable.

A B

Progress to a Low Background Experiment – DEAP 3600

Goal is to measure backgrounds of all materials which will be part of the experiment as the backgrounds may mimic the expected detector signal.

Inconcentration of

SN

AB

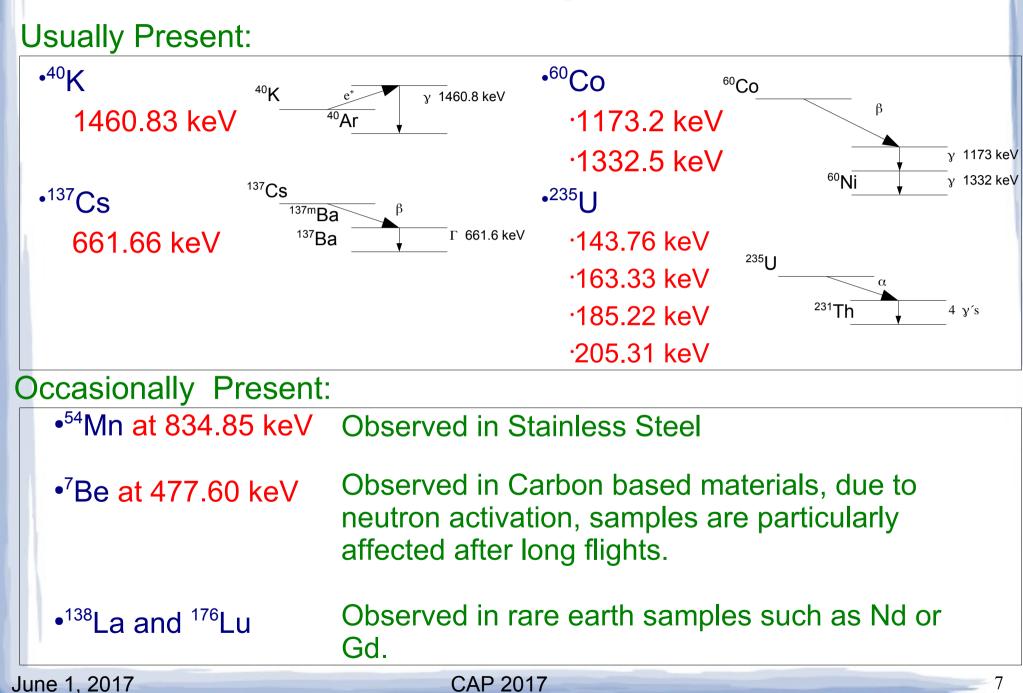
June 1, 2017

CAP 2017

Uranium Decay Chain

	Uranium – Radium A = 4n + 2 Gamma Intensities						63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064 113.5 0.010	U 238 4.468x10 ⁹ a			
										1001.03 0.837 766.38 0.294		2.269 98.2%	
	351.932 37.6 295.224 19.3 241.997 7.43 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α none β none	Po 218 3.10(1) m 9.980% 0.020%	511 0.076	Rn 222 3.8235(3) d	4 186.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a	
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	8 609.312 46.1 8 1764.494 15.4 8 1120.287 15.4 8 1238.110 5.79 8 2204.21 5.08 8 768.356 4.94 8 1377.669 4.00 8 934.061 3.03	α none Bi 214 19.9(4) m 0.276% 99.724%	none	At 218 1.5 s								
	46.539 4.25	Pb 210 22.3(2) a	▼ 799.7 0.0104	Po 214 164.3(20) us									
		none	Bi 210 5.013 d										
		Pb 206 stable	803.10 0.00121	Po 210 138.376 d									

June 1, 2017


Thorium Decay Chain

	Thorium A = 4n Gamma Intensities				13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a				
								$\begin{array}{cccc} 911.204 & 25.8 \\ 968.971 & 15.8 \\ 338.320 & 11.27 \\ 964.766 & 4.99 \\ 463.004 & 4.40 \\ 794.947 & 4.25 \\ 209.253 & 3.89 \end{array}$	Ac 228 6.15 h			
	238.632 43.3 300.087 3.28 115.183 0.592	Pb 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	▼ 549.76 0.114	Rn 220 55.6(1) s	▲ 240.986 4.10	Ra 224 3.66(4) d	84.373 1.220 215.983 0.254 131.613 0.131 166.410 0.104	Th 228 1.9116(16) a		
2614.533 99.0 583.191 84.5 510.77 22.6 860.564 12.42 277.351 6.31 763.13 1.81	Tl 208 3.053(4) m	α 39.858 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727.330 6.58 1620.50 1.49 785.37 1.102								
		Pb 208 stable		Po 212 299(2) ns								

SNCLAB

Other Interesting Isotopes

SN

SNOLAB PGT HPGe Counter (The workhorse detector at SNOLAB)

SN

SNOLAB PGT HPGe Detector Specifications

Motivation

• Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO/SNO+, DEAP/CLEAN, PICASSO/COUPP/PICO, EXO, ... Also survey materials for the DM-ICE, DRIFT, DARKSIDE20K experiments, and Canberra.

•Constructed @ SNOLAB in 2005, detector was in UG storage from 1997, continuous operations since 2005

- Endcap diameter: 83 mm,
- Crystal volume: 210 cm³
- Relative Efficiency is 55% wrt a 7.62 cm dia x 7.62 cm NaI(Tl) detector,
- Resolution 1.8 keV FWHM.
- Counter manufactured by PGT in 1992

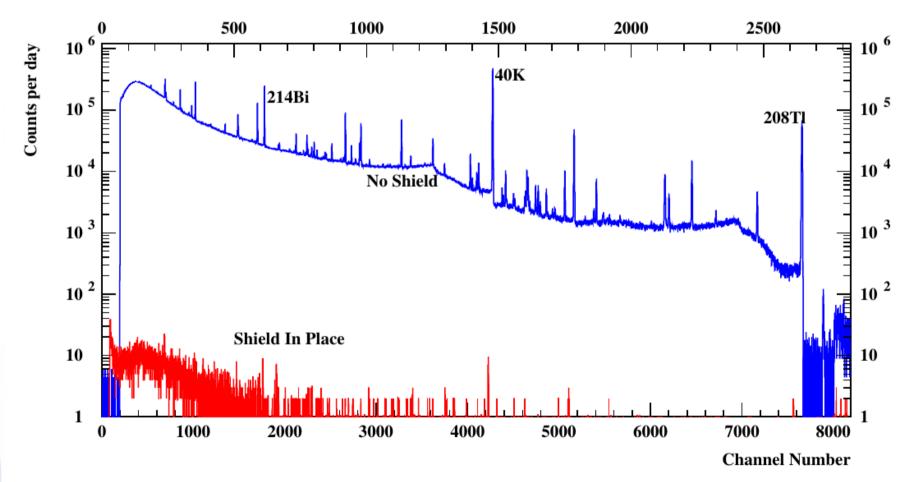
•Shielding

- 2 inches Cu + 8 inches Pb
- Nitrogen purge at 2L/min to keep radon out, as the lab radon levels are 150 Bq/m^3 .

•Detection Region

• Energy: 90 – 3000 keV

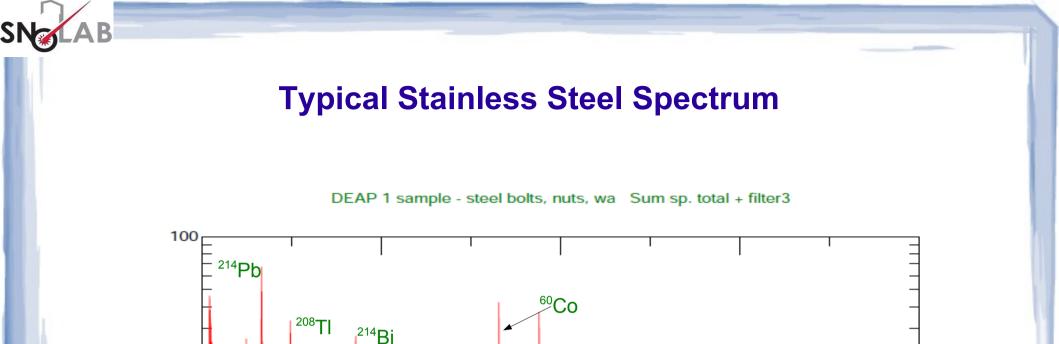
PGT HPGe Typical Detector Sensitivity (for a standard 1L or 1 kg sample counted for one week)


Isotope	Sensitivity for Standard Size Samples	Sensitivity for Standard Size Samples
²³⁸ U	0.15 mBq/kg	12 ppt
²³⁵ U	0.15 mBq/kg	264 ppt
²³² Th	0.13 mBq/kg	32 ppt
⁴⁰ K	1.70 mBq/kg	54 ppt
⁶⁰ Co	0.06 mBq/kg	
¹³⁷ Cs	0.17 mBq/kg	
⁵⁴ Mn	0.06 mBq/kg	

SN

AB

CAP 2017


Unshielded and Shielded Spectra (PGT Coax Detector)

Energy (keV)

SN

CAP 2017

10

4.00

710.00

Acquired: 3/24/2006 11:12:23 AM File: C:\HPGe\data\Deap1\total.chn

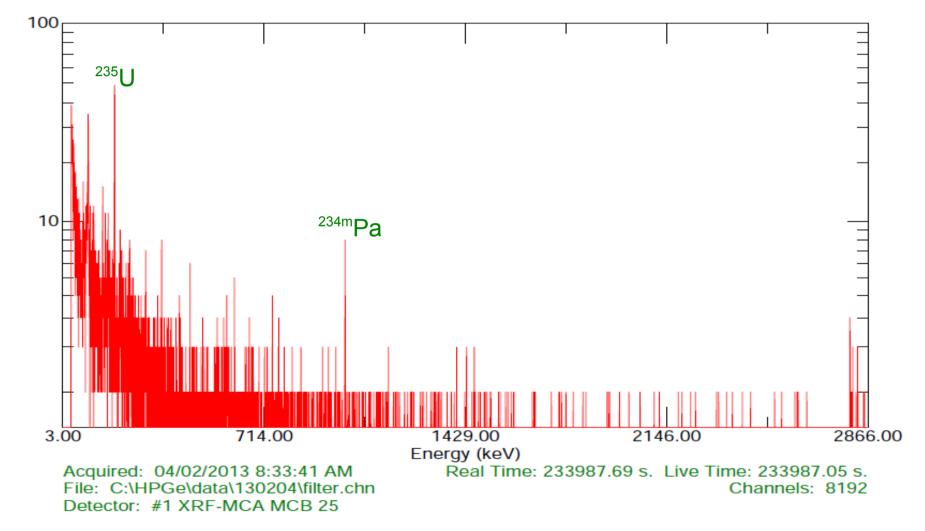
Detector: #1 XRF-MCA MCB 25

1416.00

Energy (keV)

208

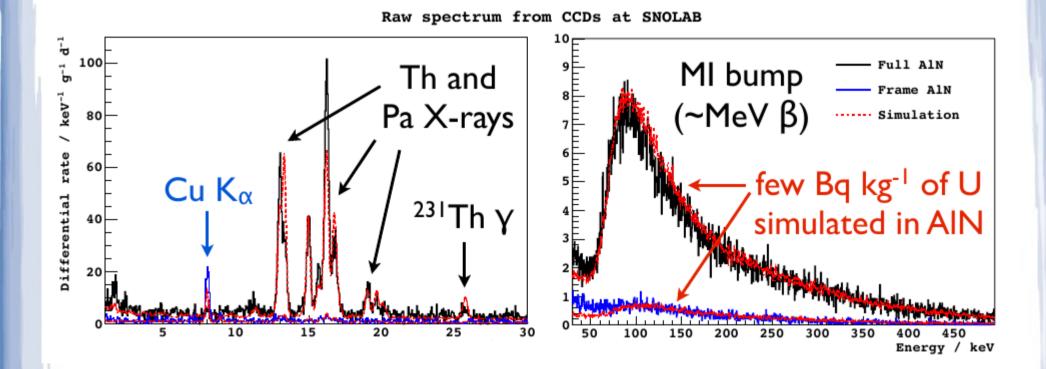
Channels: 8192


2123.00

Real Time: 696913.81 s. Live Time: 696912.50 s.

2830.00

DAMIC Ceramic Spectrum

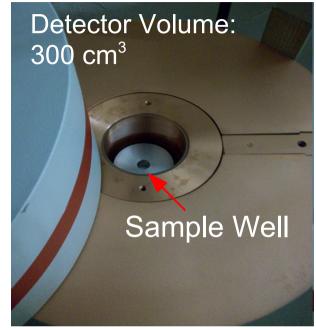


Counts

SN

DAMIC Data and Simulation Using Results From PGT HPGe Counter

SN


AB

CAP 2017

14

Canberra Well Detector at SNOLAB

Typical Sample Bottle Volume is 3 ml

SN

SNOLAB Canberra Well Detector Specifications

Motivation

• Survey very small quantities of materials, concentrated samples or very expensive materials. Used by DAMIC, DEAP, PICO, SNO+, NEWS and SuperCDMS.

•Constructed by Canberra using low activity materials and shielding.

- Counter manufactured by Canberra in 2011 and refurbished in 2012.
- Crystal volume: 300 cm³.

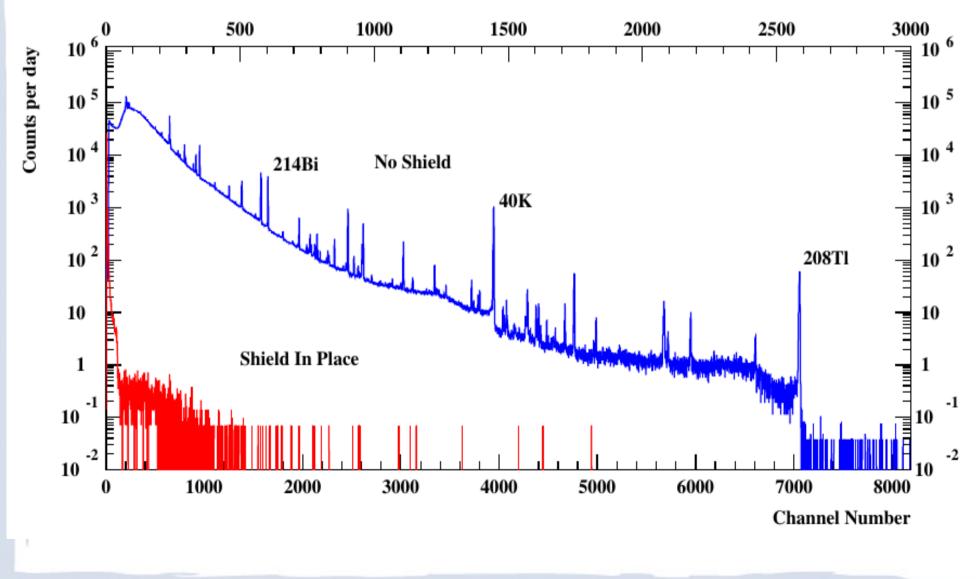
•Installed and operational in 2013.

•Shielding

- Cylindrical shielding of 2 inches Cu + 8 inches Pb
- Nitrogen purge at 2L/min to keep radon out, as the lab radon levels are 150 Bq/m^3 .
- Detection Region
 - Energy: 10 900 keV

Canberra Well Detector Sensitivity

Isotope	Sensitivity for Standard Size Samples	Sensitivity for Standard Size Samples
²³⁸ U (↑ ²²⁶ Ra)	0.05 mBq/kg	4 ppt
²³⁸ U (↓ ²²⁶ Ra)	0.08 mBq/kg	6 ppt
²²⁸ Ac	0.2 mBq/kg	49 ppt
²³² Th	0.4 mBq/kg	98 ppt
²³⁵ U	0.02 mBq/kg	35 ppt
²¹⁰ Pb	0.15 mBq/kg	12 ppt


SN

AB

CAP 2017

Unshielded and Shielded Spectra (Canberra Well Detector)

Energy (keV)

June 1, 2017

SN

AB

18

Low Background Lab

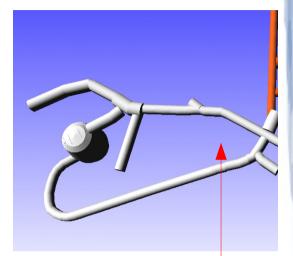
June 1, 2017

SN

AB

CAP 2017

19


Future Low Background Counters and Facilities

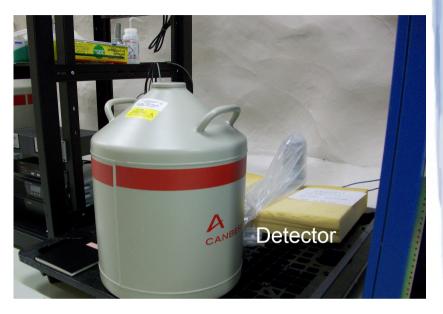
A new dedicated space is under construction for a low background lab located in the South Drift (Rm 7.)


This drift is isolated from other drifts and is inaccessible to large equipment. This will reduce micro-seismic noise which can effect low background detectors.

A radon free room will be constructed for sample preparation and sample storage underground. Surface air will be used and further purified to reduce radon levels to the order of ~ 1 mBq/m³. Ambiant radon levels in the UG lab are 135-150 Bq/m³.

Space can accommodate several HPGE detectors, XRF, radon emanation chamber, alpha counters and there is some unallocated space for additional counters which would benefit from low-cosmic ray background.

South Drift (Room 7)

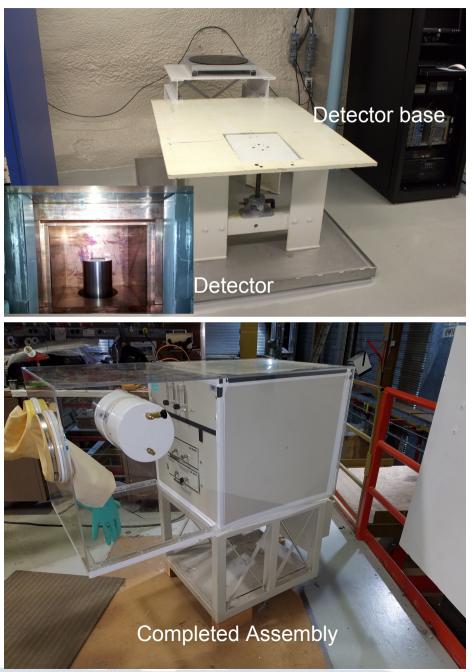


Additional Low Background Counters Coming Soon

Three additional high purity germanium detectors will be installed.

1. SNOLAB Canberra 400 cm³ coaxial HPGE detector acquired in 2011 and refurbished into an ultra-low counter in 2013 to be installed, the shielding plate is currently under construction.

2. Vue des Alpes HPGE detector, it is currently being reconditioned and should be in service soon.



Additional Low Background Counters Coming Soon

3. SOUDAN Gopher HPGE detector, shielding base is assembled, awaiting lead and copper shielding.

4. Alpha Counters

SOUDAN Tennelec alpha counter to be assembled and restarted in a radon-free glove box assembly

SN

SNOLAB maintains a database for each experiment at https://www.snolab.ca/users/services/gamma-assay

The table shows data from the standard gamma searches: ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K ¹³⁷Cs, ⁶⁰Co.

While searching for the above gammas, we also search for any other peaks in the spectrum between 100 keV and 2800 keV, For example, ⁵⁴Mn is observed in stainless steel products.

The Assay and Acquisition of Radiopure Materials (AARM) Collaboration originally developed the Community Material Assay Database radiopurity.org. The database is now hosted at SNOLAB.

Material Assay Database www.radiopurity.org

Search Submit

Edit Settings About

(pf? polyimide kapton -ptfe -raw) AND grouping:EXO

p >

Login

Total	result:	10
-------	---------	----

Grouping	Name	Isotope	Amount	Isotope	Amount	
• EXO (2008)	Polyimide substrate, Espanex flat cable, Nippon	Th	450 ppt	U	900 ppt	 ×
• EXO (2008)	PFA, Saint Gobain supplied DuPont 450-HPB	Th	65 ppt	U	75 ppt	 ×
• EXO (2008)	PFA, Saint Gobain DuPont 440-HP	Th	13.3 ppt	U	3 ppt	 ×
• EXO (2008)	Polyimide substrate, Espanex flat cable, Nippon	Th	1600 ppt	U	1500 ppt	 ×
• EXO (2008)	Polyimide tape, Stanford stock room	Th	5400 ppt	U	5800 ppt	 ×
• EXO (2008)	Copper coating, Espanex flat cable, Nippon Ste	Th	3 ppt	U	19 ppt	 ×
• EXO (2008)	Sheldal superinsulation, DuPont Kapton alumini	Th	1540 ppt	U	2500 ppt	 ×
• EXO (2008)	Polyimide substrate, Espanex flat cable, Nippon	Th	50 ppt	U	450 ppt	 ×
• EXO (2008)	Polyimide substrate, Espanex flat cable, Nippon	Th	317 ppt	U	3880 ppt	 ×
• EXO (2008)	Sheldal superinsulation, DuPont Kapton alumini	Th	1640 ppt	U	6100 ppt	 ×

SNALAB

Summary

• PGT and Canberra Well germanium detectors fully operational.

Counting queue is usually long.

The counter is available for all SNOLAB experiments and can be made available to non-SNOLAB experiments upon request (eg. DM-ICE, DRIFT).

 Canberra Coax, Vue des Alpes and Gopher germanium detectors are currently being assembled and conditioned using ultra-low background materials.

The Canberra Coax detector is underground and construction of the shielding is in progress.

The Vue des Alpes detector is shielded and is now undergoing reconditioning.

The Gopher detector is underground and awaiting its shielding

- Specialized counting can be done using the Electrostatic Counters, Alpha-Beta Counters and materials can be emanated for Radon.
- Low background counting lab is under construction and some counters are already installed and collecting data.

SN

A B