Low Background Counting Facilities At SNOLAB

Ian Lawson SNOLAB

2014 AARM Collaboration Meeting

20/03/2014

Motivation for Low Background Counters

- Current Facilities in Operation at SNOLAB
 > PGT Ge detector
- Canberra Well detector

•Characterizing a new Canberra Coax Detector

•Future Low Background Counters and Facilities

Motivation

- Many of the experiments currently searching for dark matter, studying properties of neutrinos or searching for neutrinoless double-beta decay require very low levels of radioactive backgrounds both in their own construction materials and in the surrounding environment.
- These low background levels are required so that the experiments can achieve the required sensitivities for their searches.
- SNOLAB has several facilities which are used to directly measure these radioactive backgrounds.
- The backgrounds in question are on the order of 1 mBq or 1 ppb for ²³⁸U, ²³²Th and ²³⁵U and 1 ppm for ⁴⁰K, or better, measurements down to 1 ppt are required for some components.
- The problem backgrounds can include gammas, alphas and neutrons or resulting interaction products.
- The goal is to measure these backgrounds and then to reduce them to be as low as reasonably achievable.

20/03/2014

SNOLAB

Surface Facility

Underground Laboratory

2km overburden (6000mwe)

Â

300m

SNOLAB

SNOLAB PGT HPGe Counter (The workhorse detector at SNOLAB)

SNOLAB PGT HPGe Detector Specifications

Motivation

• Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO/SNO+, DEAP/CLEAN, PICASSO/COUPP/PICO, EXO, ... Also survey materials for the DM-ICE and DRIFT experiments, and Canberra.

•Constructed @ SNOLAB from a HPGe detector and its associated shielding located underground at 4600 ft level since 1997, in near continuous operation since 205

• Counter manufactured by PGT in 1992,

- Endcap diameter: 83 mm,
- Crystal volume: 210 cm³.

•Establishment of the Low Background Gamma Facility @ SNOLAB in 2005.

- Relative Efficiency is 55% wrt a 7.62 cm dia x 7.62 cm NaI(Tl) detector,
- Resolution 1.8 keV FWHM.

Shielding

• 2 inches Cu + 8 inches Pb

• Nitrogen purge at 2L/min to keep radon out, as the lab radon levels are 150 Bq/m³. AARM 2014

Unshielded and Shielded Spectra

20/03/2014

PGT HPGe Typical Detector Sensitivity (for a standard 1L or 1 kg sample counted for one week)

Isotope	Sensitivity for Standard Size Samples	Sensitivity for Standard Size Samples
²³⁸ U	0.15 mBq/kg	0.012 ppb
²³⁵ U	0.15 mBq/kg	0.264 ppb
²³² Th	0.13 mBq/kg	0.032 ppb
⁴⁰ K	1.70 mBq/kg	0.054 ppb
⁶⁰ Co	0.06 mBq/kg	
¹³⁷ Cs	0.17 mBq/kg	
⁵⁴ Mn	0.06 mBq/kg	

	Meas	surem	ents '	To Date	e For I	Each	Experii	ment	_	
Experiment	2006	2007	2008	2009	2010	2011	2012	2013	2014	Total
SNO	2	7	0	2	0	0	0	0	0	11
SNO+	0	2	18	14	15	35	5	11	5	105
SNOLAB	7	3	0	0	9	6	17	20	0	62
EXO	1	1	0	0	2	1	0	0	0	5
MiniCLEAN	5	1	9	18	8	3	7	3	2	56
DEAP	8	8	12	10	8	15	18	18	4	101
HALO	0	0	0	2	3	1	1	0	0	7
PICASSO	1	1	4	3	0	0	0	0	0	9
DM-ICE / DRIFT					9	9	5	0	0	23
COUPP / PICO					1	15	17	10	1	44
DAMIC							1	4	2	7
Total	24	23	43	49	34	85	71	66	14	430
Calibrations &Tests	30	34	14	9	4	3	11	10	3	118

Counting time per sample averages 6 days.

PGT HPGe Vacuum Restored After Unexpected Warm Up

Unplanned warm-up of PGT detector occurred during a prolonged period of no access to SNOLAB in summer 2013.

Following the shutdown, the detector was cooled down, however it was immediately observed that the resolution of the gamma peaks doubled, severely limiting the capabilities of distinguishing nearby peaks.

11

BNC (the successor to PGT) suggested that the detector resolution could be brought back down by re-establishing a good vacuum and regenerating the molecular sieve located in the nitrogen dewar. If this didn't work, then BNC would have to repair the detector.

To that end, the dewar, cold finger and detector were heated to 80 C and the vacuum was re-established over several days in December, 2013.

The resolution of the detector was subsequently measured to be similar to the historical average, so the detector is back in normal operation.

PGT HPGe Vacuum Restored After Unexpected Warm Up

Resolution of the ²¹⁴Bi 609.31 keV gamma from the calibration sample

The detector resolution doubled after warming up, all peaks had this feature, after re-establishing the vacuum, the resolution the displayed peak was 1.76 keV FWHM, the long-term average was 1.85 keV FWHM.

20/03/2014

Canberra Well Detector at SNOLAB

20/03/2014

Canberra Well Detector at SNOLAB

Detector Volume: 300 cm³

Sample Well

Sample Bottle Volume is 3 ml

SNOLAB Canberra Well Detector Specifications

Motivation

• Survey very small quantities of materials, concentrated samples or very expensive materials. Used by DAMIC, DEAP, PICO & SNO+ so far.

•Constructed by Canberra using low activity materials and shielding.

• Counter manufactured by Canberra in 2011 and refurbished in 2012, the cold finger was lengthened as it was too short to fit the shielding and the tail end and crystal holder were replaced to reduce radioactivity levels.

• Crystal volume: 300 cm³.

•Installed and operational in 2013.

Shielding

- Cylindrical shielding of 2 inches Cu + 8 inches Pb
- Nitrogen purge at 2L/min to keep radon out, as the lab radon levels are 150 Bq/m³.

Canberra Well Detector Background

- (is the detector an ultra-low counter)
- Background run completed, 86.2 days.
 - ²³⁸U 1.16 counts per day
 - ²³²Th 0.51 counts per day
 - ²²⁸Ac 0.39 counts per day
 - ²³⁵U 0.48 counts per day
 - ⁴⁰K 0 counts per day
 - ²¹⁰Pb 0 counts per day
- Total backgrounds at the level of ~2.54 counts / day in regions of interest.
- Calibration sources approved by SNOLAB and efficiency measurements up to ~900 keV have been completed.
- Samples for DAMIC, DEAP, PICO and SNO+ have been counted or are in progress.

-Very large statistic run has recently been completed to better estimate the efficiency above 700 keV.

20/03/2014

Canberra Well Detector Sensitivity

Isotope	Sensitivity for Standard Size Samples	Sensitivity for Standard Size Samples			
²³⁸ U (↑ ²²⁶ Ra)	0.05 mBq/kg	4 ppt			
²³⁸ U (↓ ²²⁶ Ra)	0.08 mBq/kg	6 ppt			
²²⁸ Ac	0.2 mBq/kg	49 ppt			
²³² Th	0.4 mBq/kg	98 ppt			
²³⁵ U	0.02 mBq/kg	35 ppt			
²¹⁰ Pb	0.15 mBq/kg				

Canberra Coax Detector at SNOLAB

The coax detector was ran inside the well detector shielding to characterize the backgrounds in the hope the detector had backgrounds less than or similar to the PGT detector.

However, it was determined that the coax detector had extremely high background levels. It had substantial amounts of ²³²Th, ²³⁵U and the top part of the ²³⁸U chain, the other backgrounds are similar to those observed from the PGT counter.

Canberra Coax Detector at SNOLAB

The background levels for a low background detector should be no more than 100 counts/year in each detectable gamma region.

The activities present are:

- ²²⁸Th progeny at 30 counts/day
- ²²⁸Ra progeny at 30 counts/day
- ²³⁸U progeny at 500-600 counts/day, although below ²²⁶Ra the rate is only about 5 counts/day.
- ⁴⁰K at 18 counts/day

The detector was dismantled by Canberra and the pieces were counted at SNOLAB to determine if there is a smoking gun causing the high background rate.

Simulation of Coax Detector

End cap top

Detector simulated in GEANT4 to determine and verify background emitters.

Simulation of Coax Detector

⁴⁰K signal most likely due to inadequate shielding thickness

TABLE IV. Calculated count rates *R* for various components. For comparison to these calculated rates, the measured count rate is given on the first line. Two entries are given for the bottom of the Th chain - the separate rates of the γ rays at 583 keV and 2615 keV. γ energies for the other entries are 911 keV (Th-chain top), 1001 keV (U-chain top), 609 keV (U-chain bottom), and 1461 keV (⁴⁰K).

				nts/day)			
		Th chain			U		
Line	Component	Тор	Bottom (583)	Bottom(2615)	Тор	Bottom	⁴⁰ K
1	Measured count rate of coaxial detector	11±1	8.3±1.8	11±1	4.8±0.7	4.5±1.8	5.4±0.7
2	Tail end (old)	10.4±1.0	8.4±0.6	8.7±0.7	5.2±1.0	0.6±0.3	< 0.76
3	Tail end (new)	< 0.09	< 0.15	<0.16	< 0.05	<0.17	< 0.37
4	Crystal holder (new-Al)	$0.90 {\pm} 0.80$	<1.10	< 0.55	<1.95	<1.04	<4.1
5	Crystal holder (old-Mg)	<1.05	<1.21	< 0.61	<1.63	<1.64	<2.4
6	4 screws in crystal holder	< 0.03	< 0.08	< 0.04	< 0.06	< 0.05	< 0.1
7	Lead shield	< 0.53	< 0.83	< 0.52	<1.04	< 0.85	<2.5
8	3 screws in Pb shield	< 0.04	< 0.09	< 0.06	< 0.11	< 0.06	< 0.1
9	Lead foil next to crystal	0.53 ± 0.50	0.60 ± 0.64	0.25 ± 0.27	< 0.51	< 0.75	1.0 ± 1.2
10	Contact set	< 0.81	<1.35	< 0.53	<2.89	<1.66	<1.8
11	3 sapphire discs	< 0.39	< 0.43	< 0.42	< 0.33	< 0.35	<1.9
12	Heat-sink compound	< 0.02	< 0.02	< 0.02	< 0.03	< 0.02	0.14 ± 0.07
13	FET (in packing)	0.09 ± 0.05	0.06 ± 0.04	0.08 ± 0.04	< 0.22	0.09 ± 0.05	< 0.01
14	Screw set 1	< 0.11	0.38 ± 0.08	0.45 ± 0.09	< 0.14	< 0.12	< 0.23
15	Holding pot	$0.06 {\pm} 0.05$	< 0.04	< 0.05	< 0.08	< 0.04	< 0.26

AARM 2014

Canberra Coax Returned too SNOLAB

- Canberra returned refurbished detector to SNOLAB in December 2013.
- Backgrounds measured using well detector shielding, preliminary results look promising with ²³⁵U, ²³⁸U levels similar to the PGT counter, ⁴⁰K results are lower, however, ²³²Th results appear to be slightly higher.
- Engineering design drawings are now in progress for the detector shielding.
 - 8" Pb for outer shielding (from same batch as used by the PGT det.)
 - 2" low background Pb from Plombum
 - 2" low background Cu
 - (1/4" acrylic, inner layer primarily to maintain cleanliness of the chamber)
- Detector chamber to be designed to hold samples up to 20 litres
- Entire detector will be enclosed in an airtight copper or stainless steel box and the chamber will be purged with nitrogen.

20/03/2014

SNOLAB Low Background Laboratory (To be built)

A new dedicated space will be constructed at SNOLAB for a low background lab located in the South Drift (former refuge station).

This drift is isolated from other drifts and is inaccessible to large equipment. This will help reduce micro-seismic noise which can effect Ge detectors.

Increased air flow and perhaps other radon reduction techniques will be used. It is known that the compressed air from surface has substantially less radon than the lab air and can be used to reduce radon levels from 135-150 Bq/m³ to 1-5 Bq/m³.

Space can accommodate up to 5 Ge detectors, XRF, radon emanation chamber and have room for other types of counters which would benefit from low-cosmic ray background.

Engineering design drawings are now in progress.

Future Low Background Counting Lab

Electrostatic Counting System

9 counters located at SNOLAB,1 on loan to LBL (EXO),1 on loan to U of A (DEAP).

Originally built for SNO, now used primarily by EXO. However, these counters are owned by SNOLAB so samples can be measured for other experiments.

Measures ²²²Rn, ²²⁴Ra and ²²⁶Ra levels.

Sensitivity Levels are:

²²²Rn: 10⁻¹⁴ gU/g

²²⁴Ra: 10⁻¹⁵ gTh/g

²²⁶Ra: 10⁻¹⁶ gU/g

Work is ongoing to improve sensitivity even further.

Alpha Beta Counting System

Currently located at the SNOLAB hot lab at LU so that radioactive spike sources can be measured for SNO+.

Sensitivity for 238 U and 232 Th is ~ 1 mBq assuming that the chains are in equilibrium.

SNOLAB Data Repository

SNOLAB maintains a database in a spreadsheet format for each experiment. https://www.snolab.ca/users/services/gamma-assay/index.html

The data is shown in units of mBq/kg and pp(b or m).

The table shows data from the standard gamma searches: ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K ¹³⁷Cs, ⁶⁰Co.

While searching for the above gammas, we also search for any other peaks in the spectrum between 100 keV and 2800 keV, For example, ⁵⁴Mn is usually observed in steel. These are also included in the spreadsheet for each sample.

The database is available to all SNOLAB users and can be made available to others upon request as it is password protected, contact lan.Lawson@snolab.ca or Bruce.Cleveland@snolab.ca.

Summary

• SNOLAB PGT HPGe low background counting system has run continuously for the past since 2005 and has counted 430 samples so far.

Counting queue is usually long.

The counter is available for all SNOLAB experiments and can be made available to non-SNOLAB experiments upon request (eg. DM-ICE, DRIFT).

• Two Canberra Ge detectors were delivered to SNOLAB, but each needed to be refurbished.

The Canberra Well detector is now in full operation

The Canberra Coax detector is underground and will undergo further background testing. Engineering drawings of the shielding design are in progress.

- Specialized counting can be done using the Electrostatic Counters and Alpha-Beta Counters and materials can be emanated for Radon.
- New low background counting lab will be constructed at SNOLAB, final engineering drawings are now underway.