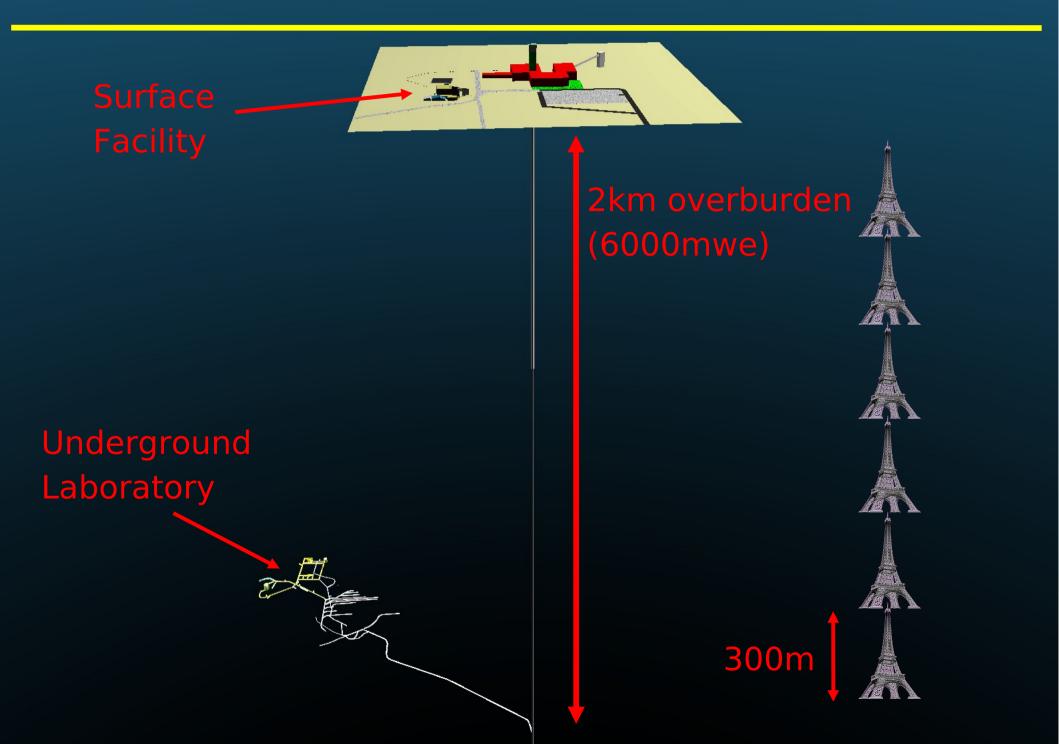
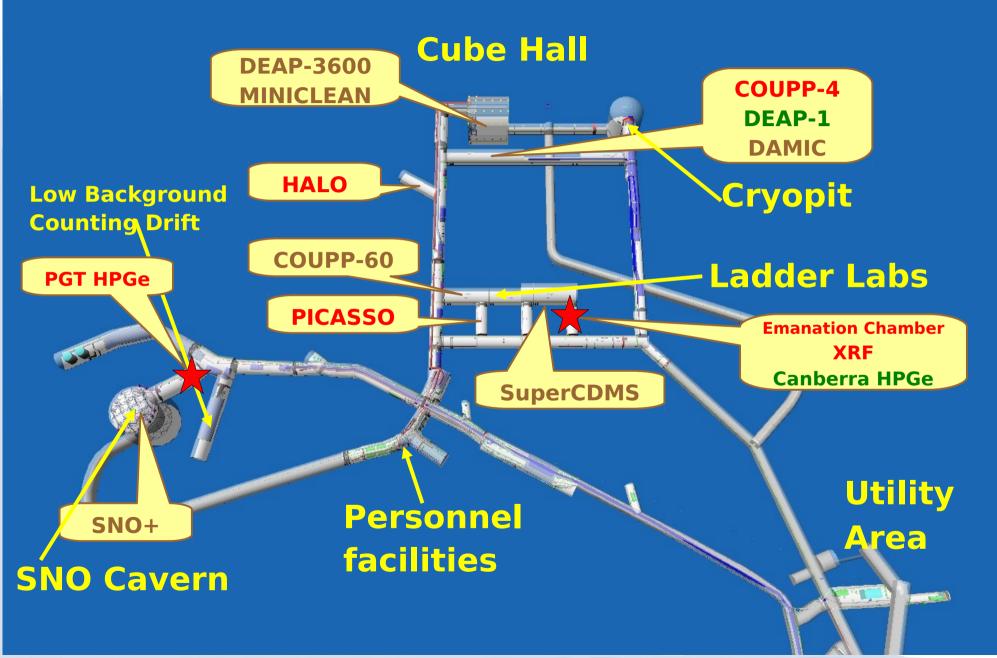

Low Background Counting Techniques At SNOLAB

Ian Lawson
SNOLAB Research Scientist


FNAL Research Technical Seminar



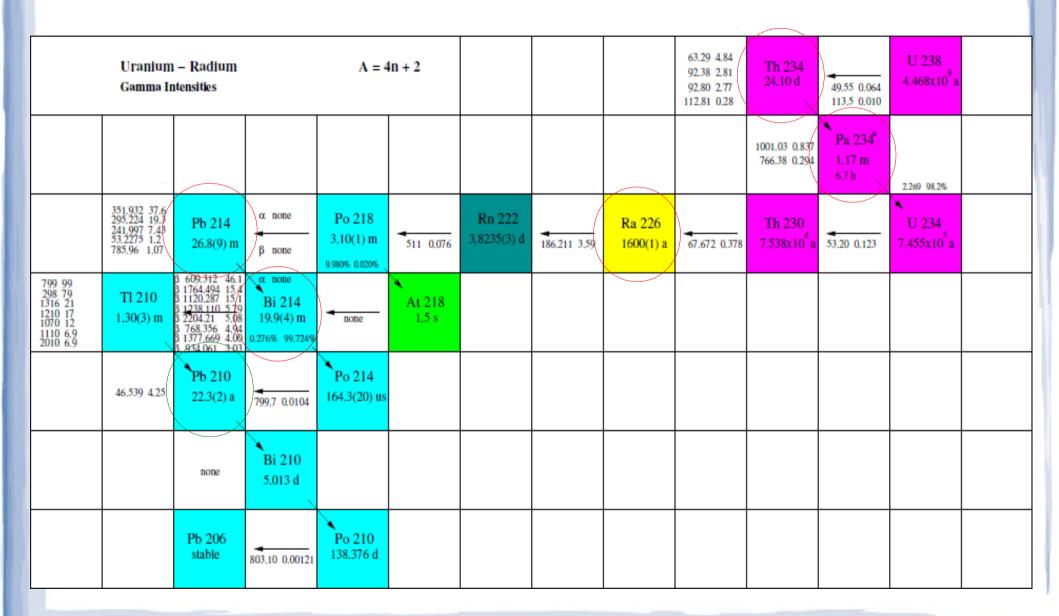
Outline

- Background Information
- •Description of the SNOLAB Low Background Counting System, Including Results
- Electrostatic (ESC) Counters
- Alpha/Beta Counting System
- Underground Radon Levels at SNOLAB and How to Reduce These Levels
- •Future Low Background Counting Facilities: Includes the new Canberra Well Detector Now Operational

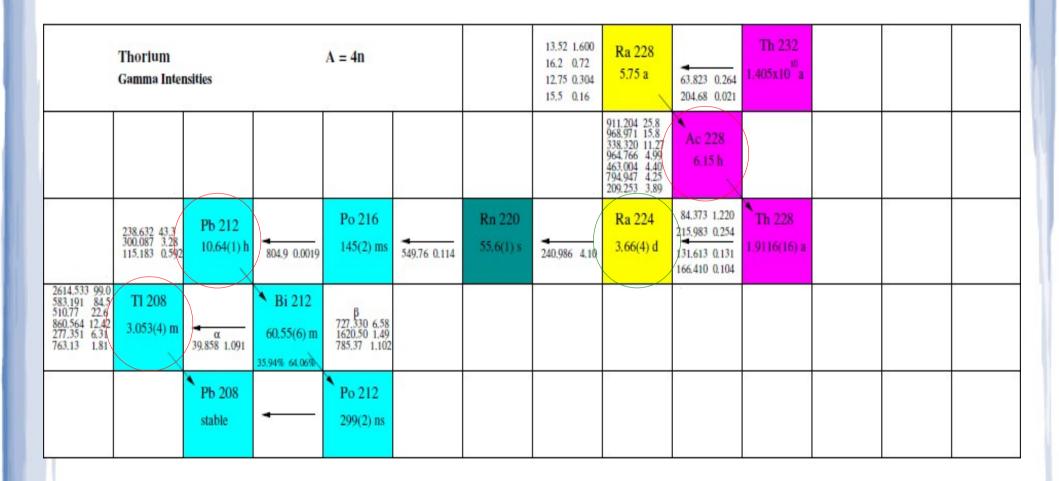
SNOLAB

Low Background Techniques Motivation

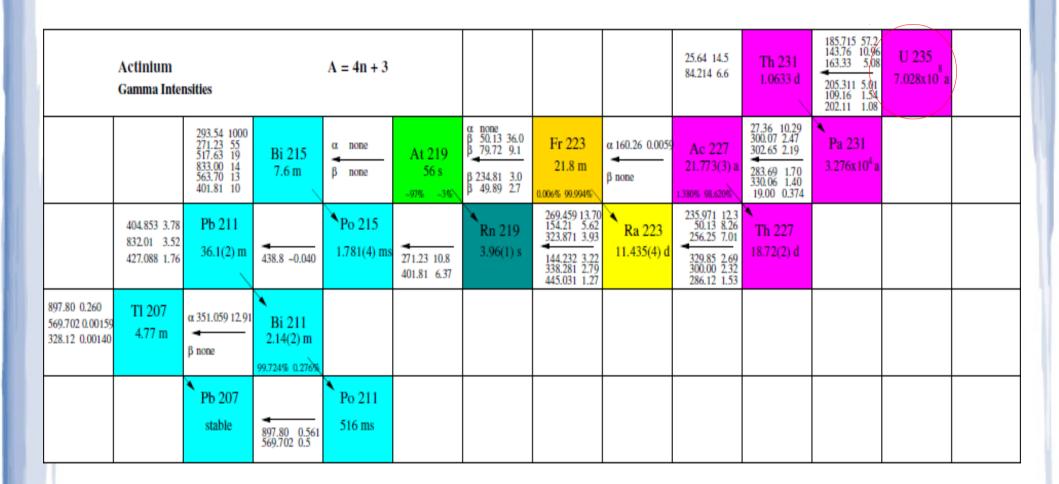
- Many of the experiments currently searching for dark matter, studying properties of neutrinos or searching for neutrinoless double-beta decay require very low levels of radioactive backgrounds both in their own construction materials and in the surrounding environment.
- These low background levels are required so that the experiments can achieve the required sensitivities for their searches.
- SNOLAB has several facilities which are used to directly measure these radioactive backgrounds.
- The backgrounds in question are on the order of 1 mBq or 1 ppb for ²³⁸U, ²³²Th and ²³⁵U and 1ppm for 40K, or less.
- The problem backgrounds can include gammas, alphas and neutrons
- The goal is to measure these backgrounds and then to reduce them to be as low as reasonably achievable.


Key R&D Topics

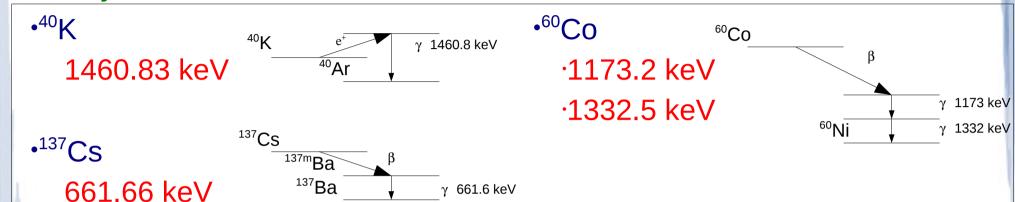
- Development and strengthening of the ultra low background facilities and instrumentation in the UG labs
- measurement and monitoring of the background components in the underground Labs – Development of background simulation codes
- application of low background techniques to interdisciplinary fields
- R&D on radiopurity of materials and purification techniques.


Support (from groups such as AARM):

- personnel
- travel money
- contribution to equipment and consumables for selected specific activities codes


²³⁸U Decay Chain

²³²Th Decay Chain



²³⁵U Decay Chain

Other Interesting Isotopes

Usually Present:

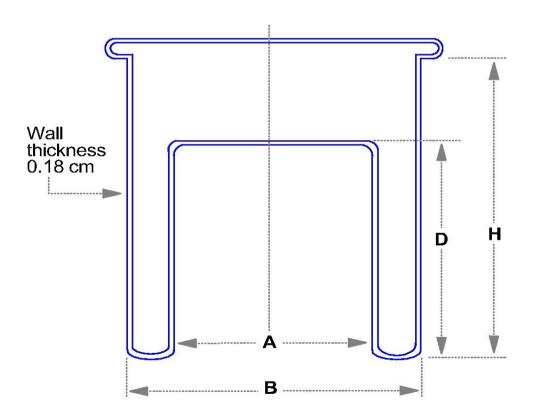
Occasionally Present:

•54Mn at 834.85 keV Observed in Stainless Steel and other metals

•⁷Be at 477.60 keV Observed in Carbon based materials, due to neutron activation, samples are particularly affected after long flights.

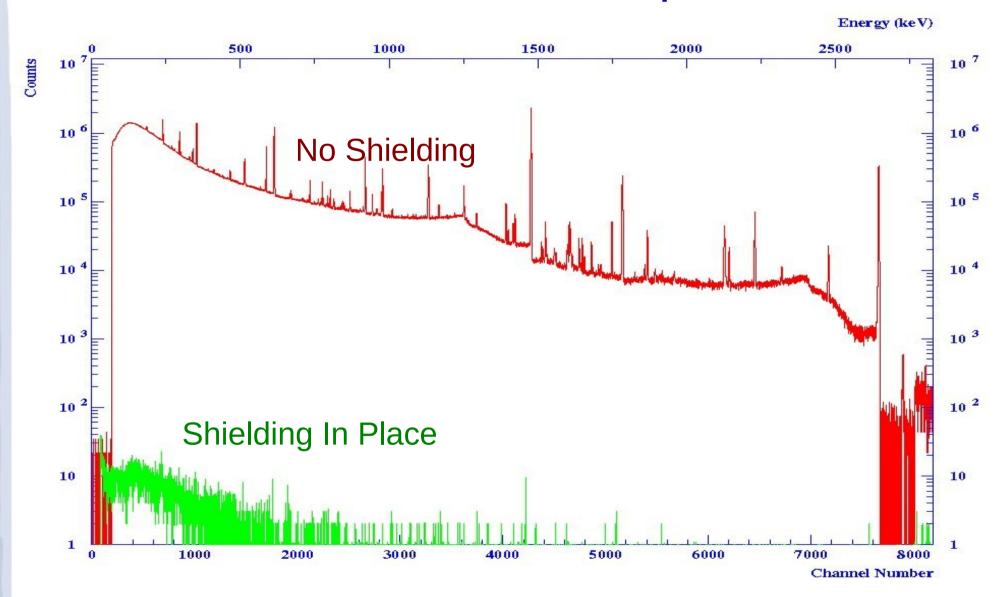
•138La and 176Lu Observed in rare earth samples such as Nd or Gd.

SNOLAB HPGe Counter



SNOLAB HPGe Detector Specifications

- •Establishment of the Low Background Gamma Facility @ SNOLAB in 2005.
- Motivation
 - Survey materials for new, existing and proposed experiments (to be) located @ SNOLAB, such as SNO, SNO+, DEAP/CLEAN, PICASSO, EXO, ... Also survey materials for the DM-ICE experiment.
- •Constructed @ SNOLAB from an HPGe detector and its associated shielding located underground at 4600 ft level since 1997.
 - · Counter manufactured by PGT.
 - Endcap diameter 83 mm.
 - Relative Efficiency is 55% wrt a 7.62 cm dia x 7.62 cm NaI(Tl) detector.
 - Resolution 1.8 keV FWHM.
- Shielding
 - 2 inches Cu + 8 inches Pb
 - Nitrogen purge at 2L/min to keep radon out.


Sample Preparation

Marinelli Beaker

- -The current beakers have a volume of 1 L.
- -The beakers are made out of polyethylene.
- -We have smaller beakers that are 250mL. These can be used for small and/or expensive samples.
- -Samples should be made to fit into the beaker so that as much of the sample as possible is near the counter, it is preferable to crush the sample if possible.
- -Samples can also be placed directly on top of the crystal.

Unshielded and Shielded Spectra

Background Comparison

Unshielded Versus Shielded Activity

Isotope	Activity Unshielded Crystal(Bq)	Activity Shielded Crystal (Bq)
²³⁸ U	70.11 ± 1.64	0.00128 ± 0.00016
²³² Th	36.99 ± 1.21	0.00131 ± 0.00015
⁴⁰ K	1723.33 ± 88.02	0.0189 ± 0.0017
¹³⁷ Cs	1.00 ± 0.15	0.0020 ± 0.0002
⁶⁰ Co	0.023 ± 0.052	0.00036 ± 0.00005

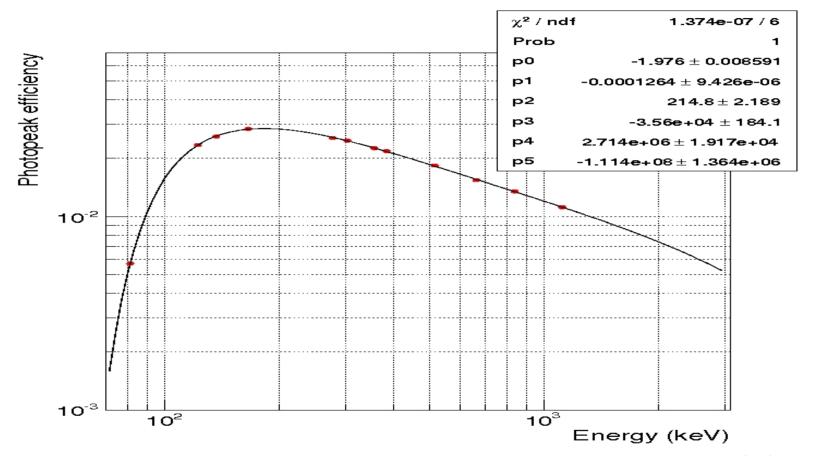
Unshielded Measurements done by Yoram Nir-EL

PGT HPGe Standard Detector Sensitivity (for a standard 1L or 1 kg sample)

Isotope	1 Bq/kg	1 ppb	Sensitivity for Standard Size Samples	Typical for Earth's Crust
²³⁸ U	81 ppb	12 mBq/kg	~ 1 mBq/kg ~ 0.1 ppb	37 Bq/kg 3 ppm
²³² Th	246 ppb	4.1 mBq/kg	~ 1.5 mBq/kg ~ 0.3 ppb	45 Bq/kg 11 ppm
⁴⁰ K	32 ppm	0.031 mBq/kg	~ 21 mBq/kg ~ 0.7 ppm	800 Bq/kg 2.5 %

Better sensitivities have been achieved for specialized very large samples combined with an extremely long counting period:

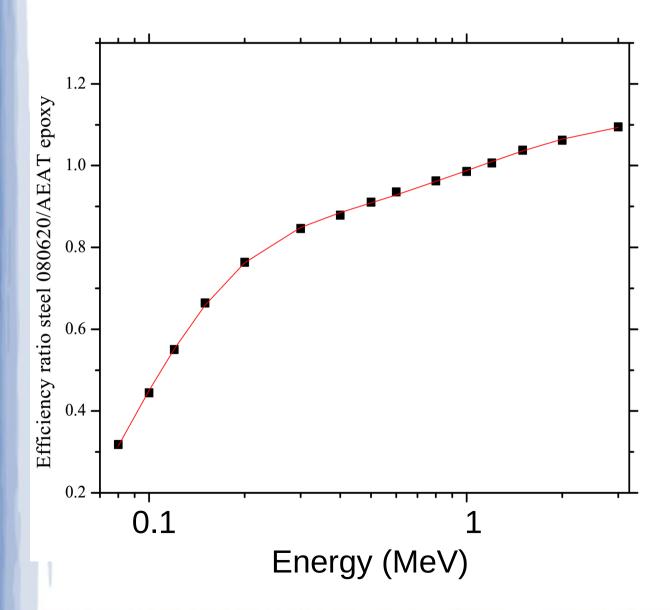
²³⁸U: 0.009 ppb,


²³²Th: 0.02 ppb,

⁴⁰K: 87 ppb

Sensitivities of SNOLAB Compared to Some Other Facilities

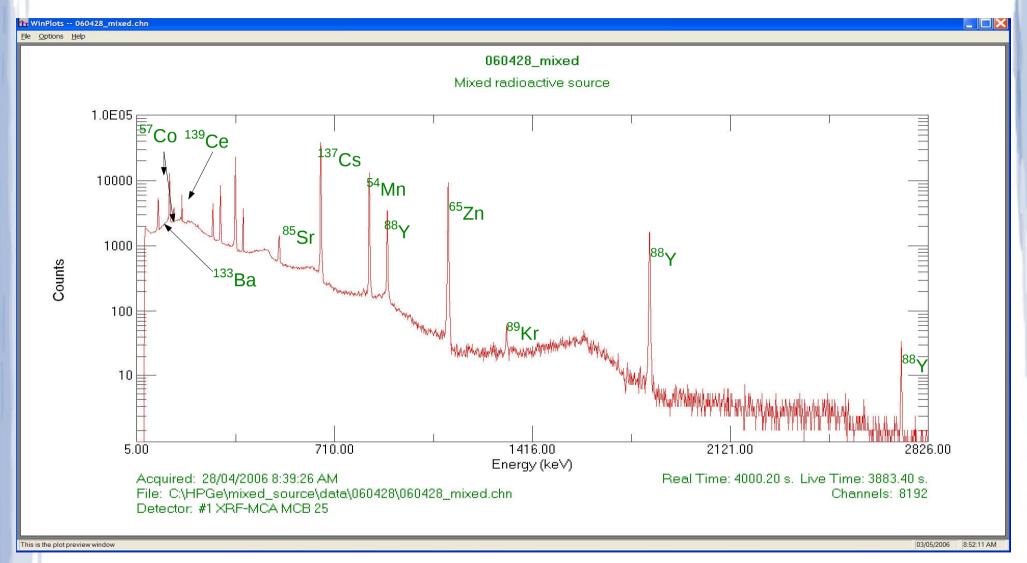
Isotope	SNOLAB	SOLO	LBCF Surface Facility	LBCF Underground Facility
²³⁸ U	1 mBq/kg	1 mBq/kg	9 mBq/kg	0.9 mBq/kg
	0.1 ppb	0.1 ppb	0.5 ppb	0.05 ppb
²³² Th	1.5 mBq/kg	0.5 mBq/kg	12 mBq/kg	1.2 mBq/kg
	0.3 ppb	0.05 ppb	2 ppb	0.2 ppb
⁴⁰ K	21 mBq/kg	10 mBq/kg	32 mBq/kg	3.2 mBq/kg
	0.7 ppm	0.25 ppm	1 ppm	0.1 ppm


Detector Efficiency From A Mixed Calibration Sample

Plot by James Loach

The efficiency is scaled to individual samples using GEANT 4.9.4 which takes into account the sample components, to account for the density difference between the calibration source and the sample, and the sample geometry.

Typical Efficiency Correction



Efficiency correction for steel sample.

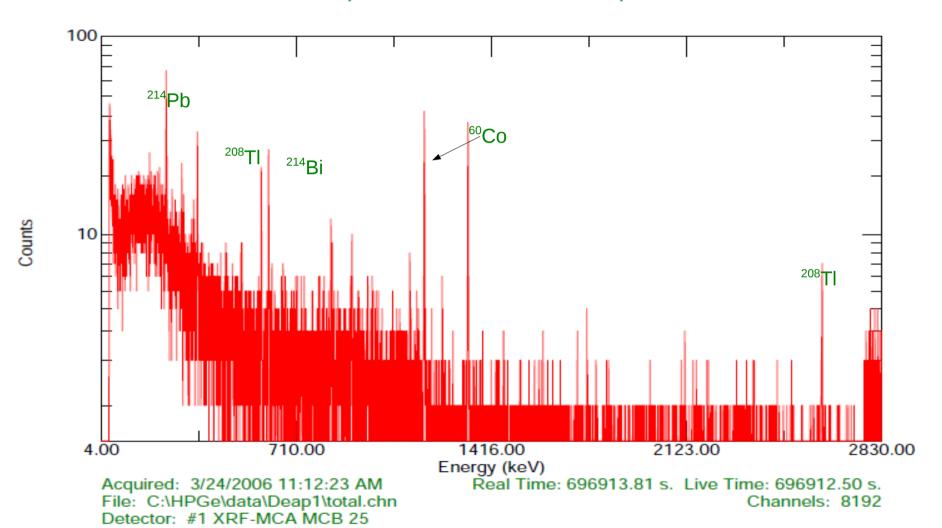
Use GEANT4.9.4, simulate detector with 5 million events at each energy.

Extrapolate between energy bins with a polynomial fit.

Calibration Spectrum

New calibration standards are being proposed which have much longer half-lives to allow the calibration sample to be used for several years unlike most commercial multigamma calibration samples. Would be used to cross-calibrate PGT and Canberra detectors.

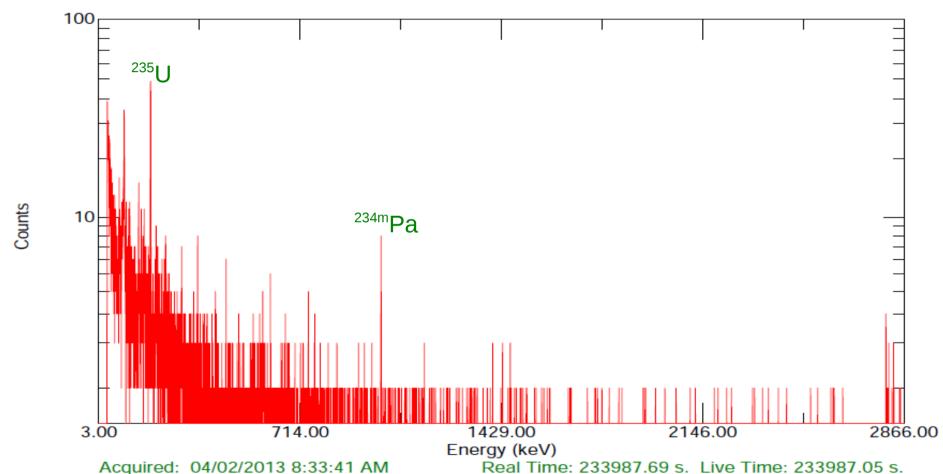
Measurements To Date For Each Experiment


Experiment	2006	2007	2008	2009	2010	2011	2012	Total
SNO	2	7	0	2	0	0	0	11
SNO+	0	2	18	14	15	35	5	89
SNOLAB	7	3	0	0	9	6	17	42
EXO	1	1	0	0	2	1	0	5
MiniCLEAN	5	1	9	18	8	3	7	51
DEAP	8	8	12	10	8	15	18	79
HALO	0	0	0	2	3	1	1	7
PICASSO	1	1	4	3	0	0	0	9
DM-ICE / DRIFT					9	9	5	23
COUPP					1	15	17	33
DAMIC							1	1
Total	24	23	43	49	34	85	71	350
Calibrations &Tests	30	34	14	9	4	3	11	105

Samples in Detector Queue: - 10, which means up to 10 weeks or more of counting time!

- the queue keeps getting longer, so the new counters are very important.

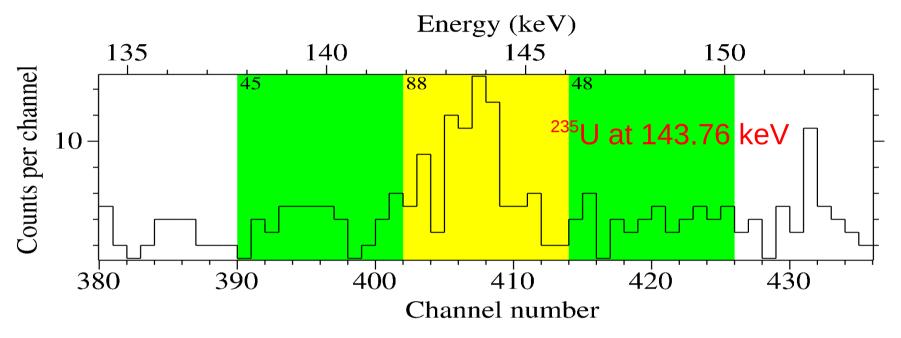
Typical Stainless Steel Spectrum

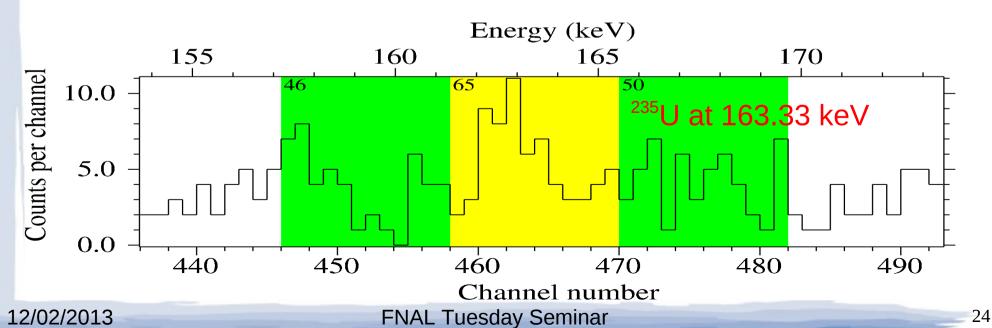

DEAP 1 sample - steel bolts, nuts, wa Sum sp. total + filter3

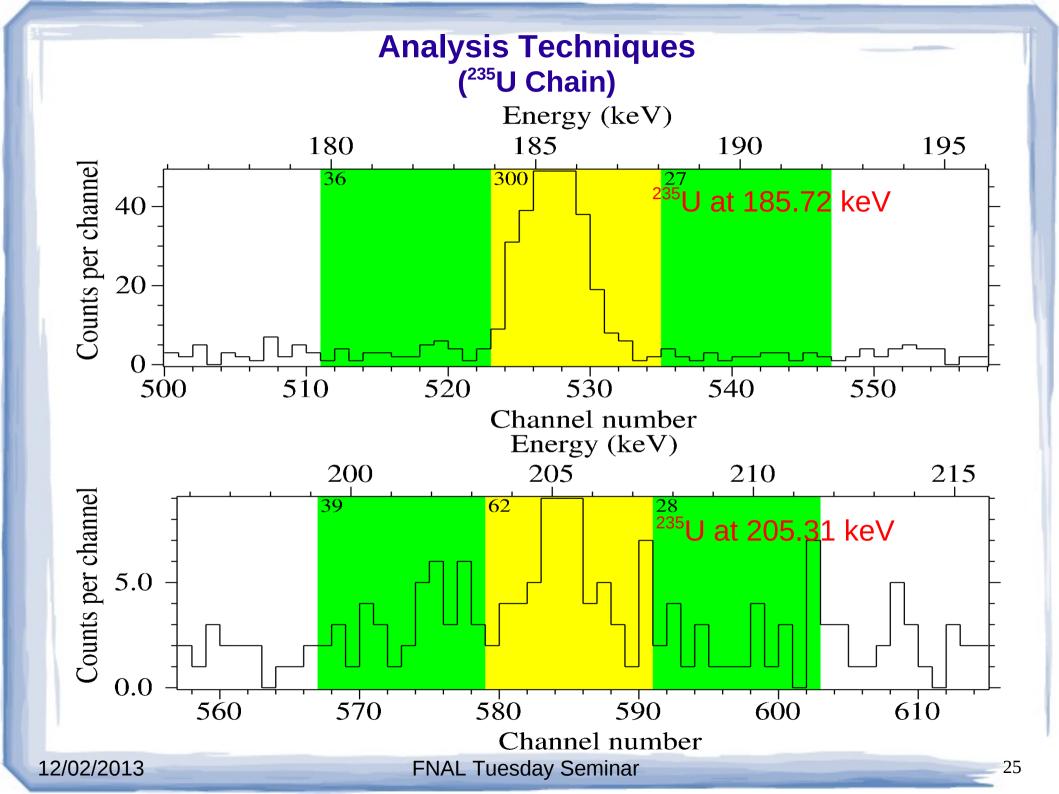
DAMIC Ceramic Spectrum

filter

DAMIC, Al-N Ceramic, mass 94.4 g




Acquired: 04/02/2013 8:33:41 AM File: C:\HPGe\data\130204\filter.chn


Detector: #1 XRF-MCA MCB 25

Channels: 8192

Analysis Techniques (How the rate is calculated)

Calculate Rate: Rate =
$$\frac{(N_p - N_{ab} - N_{pb})}{(Eff \times Int \times T_L)}$$

where N_n is the number of peak events

N_{ab} is the average number of events from the two background bands, if there are peak interferences then only one band may be used.

 $N_{_{\mathrm{nb}}}$ is the intrinsic detector background in the peak window

Eff is the detector efficiency at the peak energy

Int is the gamma intensity at the peak energy, sometimes referred to as the branching fraction, this is corrected to give the rate of the parent in the decay chain.

T_i is the detector live time.

Analysis Techniques (235 U Chain)

If the decay chain is in equilibrium the results from each peak are combined to give the overall background for the parent isotope.

Energy	N _p	N _{ab}	N _{pb}	N	Int (%)	Eff (%)	Rate (mBq)
143.76	88 ± 9.4	46.5 ± 4.8	0 ± 0	41.5 ± 10.5	10.96 ± 0.14	6.095 ± 0.457	26.6 ± 7.0
163.33	65 ± 8.1	48.0 ± 4.9	0 ± 0	17.0 ± 9.4	5.08 ± 0.06	6.216 ± 0.466	23.0 ± 12.9
185.715	300 ± 17.3	31.5 ± 4.0	0 ± 0	268.5 ± 17.8	57.20 ± 0.80	6.147 ± 0.461	32.6 ± 3.3
205.311	62 ± 7.9	33.5 ± 4.1	0 ± 0	28.5 ± 8.9	5.01 ± 0.07	6.001 ± 0.450	40.5 ± 13.0

Live Time: 233987.0 sec

Sample Mass: 94.4 g

Average Rate: 31.53 ± 2.84 mBq

333.958 ± 30.063 mBq/kg

587.767 ± 52.911 ppb

DAMIC CCD

(Note that the CCD is attached to a thin wafer)

filter

DAMIC, CCD, mass 18.5 g

Acquired: 07/02/2013 9:15:01 AM File: C:\HPGe\data\130207\filter.chn

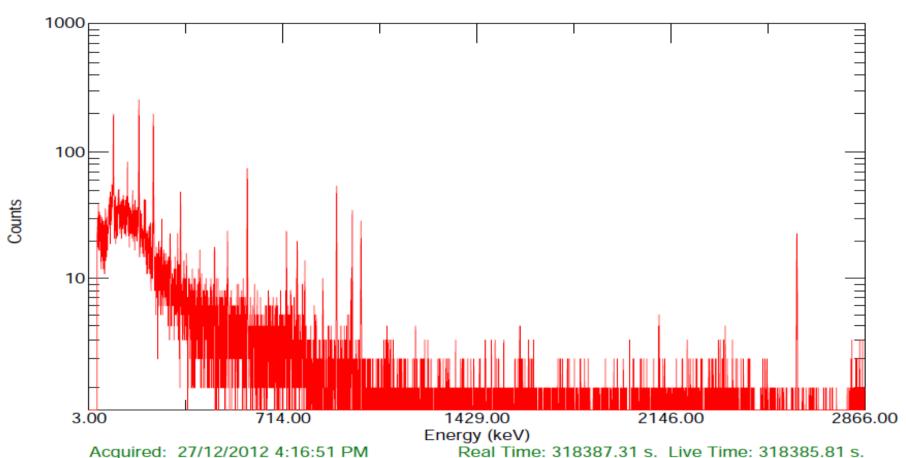
Detector: #1 XRF-MCA MCB 25

Real Time: 433509.41 s. Live Time: 433509.13 s.

Channels: 8192

Results from DAMIC Aluminium Nitride Ceramic and CCD

Ceramic (94.4 g)


²³⁸ U from ²²⁶ Ra	²³⁸ U from ²³⁴ Th	²³⁵ U	²³² Th	⁴⁰ K
42.16 +- 9.25 mBq/kg	4109.85 +- 530.95 mBq/kg	333.96 +- 30.06 mBq/kg	32.10 +- 8.61 mBq/kg	45.55 +- 66.74 mBq/kg
3.42 +- 0.75 ppb	332.90 +- 43.01 ppb	587.77 +- 52.91 ppb	7.90 +- 2.12 pb	1471.29 +- 2155.61 ppb

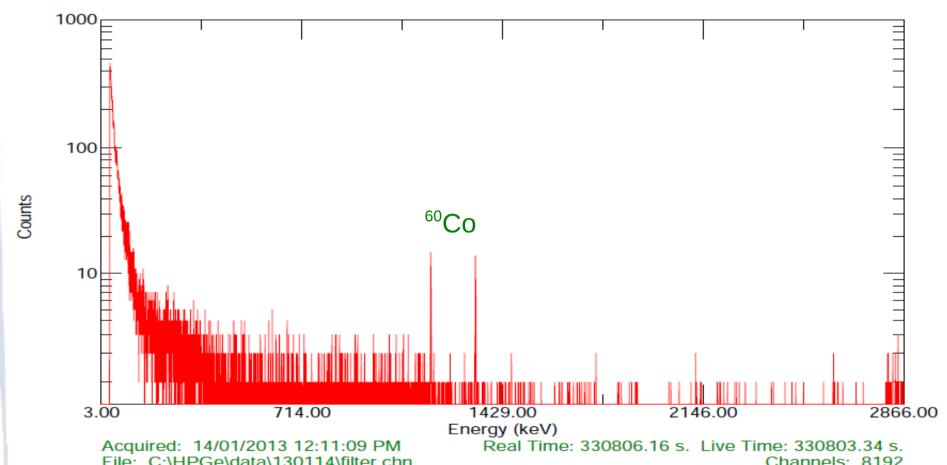
CCD (18.5 g)

		<u> </u>	/	
429.95 +- 47.05 mBq/kg	2017.87 +- 702.85 mBq/kg	227.27 +- 41.40 mBq/kg	209.10 +- 31.80 mBq/kg	<110.45 mBq/kg
34.83 +- 3.81 ppb	163.45 +- 56.93 ppb	399.99 +- 72.86 ppb	51.44 +- 7.82 ppb	<3.57 ppm

COUPP Sample, Aluminium Camera Mount From COUPP-4

filter COUPP4, Aluminum from camera mounting, 676.7 g

File: C:\HPGe\data\12122701\filter.chn


Real Time: 318387.31 s. Live Time: 318385.81 s. Channels: 8192

Detector: #1 XRF-MCA MCB 25

Lots of peaks from ²³⁵U and ²³²Th, and ²³⁸U above ²²⁶Ra.

COUPP Sample, New Stainless Steel Camera Mount For COUPP-4

File: C:\HPGe\data\130114\filter.chn

Detector: #1 XRF-MCA MCB 25

Channels: 8192

Only observable background is from 60Co, which is expected to be present in stainless steel.

SNOLAB Data Repository

SNOLAB maintains a database in a spreadsheet format for each experiment.

The data is shown in units of mBq/kg or pp(b or m).

The table shows data from the standard gamma searches: ²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K ¹³⁷Cs, ⁶⁰Co.

While searching for the above gammas, we also search for any other peaks in the spectrum between 100 keV and 2800 keV, For example, ⁵⁴Mn is usually observed in steel. These are also included in the spreadsheet for each sample.

The database is available to all SNOLAB users and can be made available to others upon request as it is password protected, contact lan.Lawson@snolab.ca or Bruce.Cleveland@snolab.ca.

Other Background Results

Several rock, shotcrete and concrete samples have been assayed from the new laboratory using a Ge counter at U. of Guelph and ICP-MS methods. Each area of SNOLAB has several measurements.

Ge Detector Results

Material	²³² Th	238	⁴⁰ K
	(ppm)	(ppm)	(%)
Average rock results	5.56 ± 0.57	1.11 ± 0.15	1.01 ± 0.12
Shotcrete	15.24 ±0.14	2.46 ± 0.09	1.78 ± 0.05
Concrete	15.38 ±0.40	2.41 ± 0.03	1.75 ± 0.05

Comparison of Ge Counting and ICP-MS

Element	Rock Sa	mple 8	Rock Sample 11		
	Ge	ICP-MS	Ge	ICP-MS	
K (%)	1.09 ± 0.01	0.97	1.08 ± 0.03	1.02	
U (ppm)	1.24 ±0.16	1.21	1.09 ± 0.03	1.14	
Th (ppm)	5.44 ±0.37	5.54	5.72 ± 0.05	5.19	

Element	Shotcrete	e Sample 15	Concrete	Sample 14
	Ge	ICP-MS	Ge	ICP-MS
K (%)	1.78 ± 0.05	1.76	1.75 ± 0.05	1.61
U (ppm)	2.46 ±0.09	2.56	2.41 ± 0.03	2.38
Th (ppm)	15.24 ±0.14	14.90	15.38 ± 0.40	13.10

Electrostatic Counting System

Measures ²²²Rn, ²²⁴Ra and ²²⁶Ra levels.

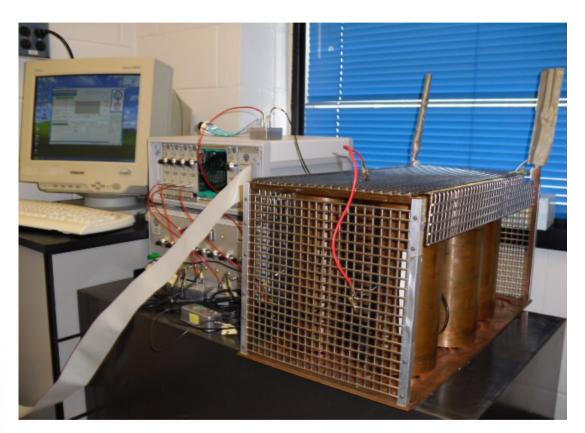
Sensitivity Levels are:

²²²Rn: 10⁻¹⁴ gU/g

²²⁴Ra: 10⁻¹⁵ gTh/g

²²⁶Ra: 10⁻¹⁶ gU/g

Work is ongoing to improve sensitivity even further.


9 counters located at SNOLAB,

1 on loan to LBL,

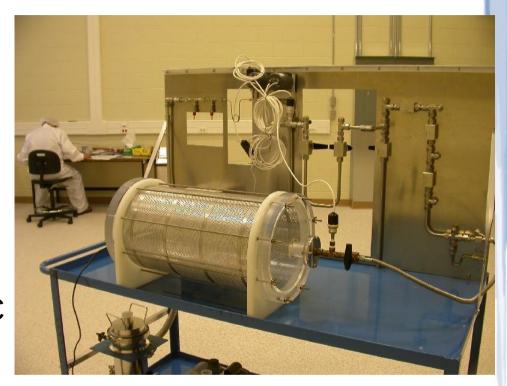
1 on loan to U of A,

1 remains at U. of Guelph

Alpha Beta Counting System

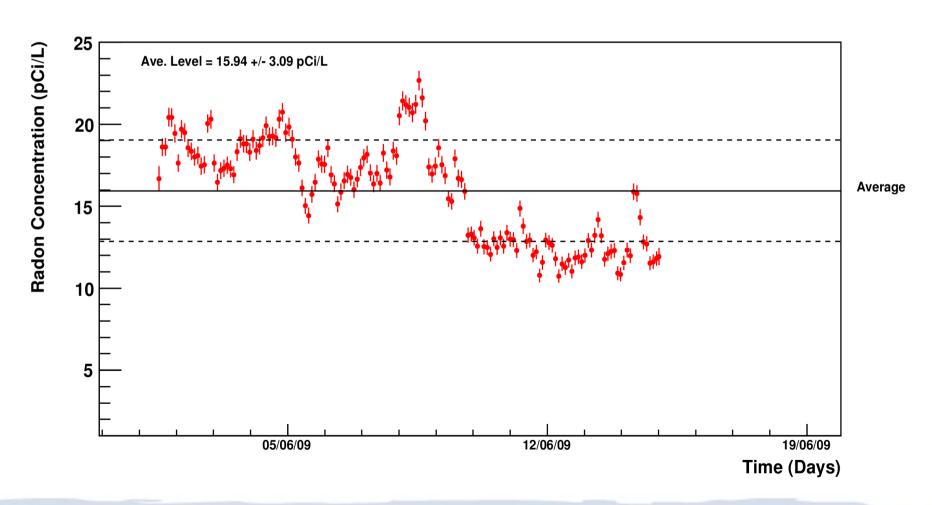
Currently located at the SNOLAB hot lab at LU so that spike sources can be measured.

Sensitivity for ²³⁸U and ²³²Th is ~ 1 mBq assuming that the chains are in equilibrium.

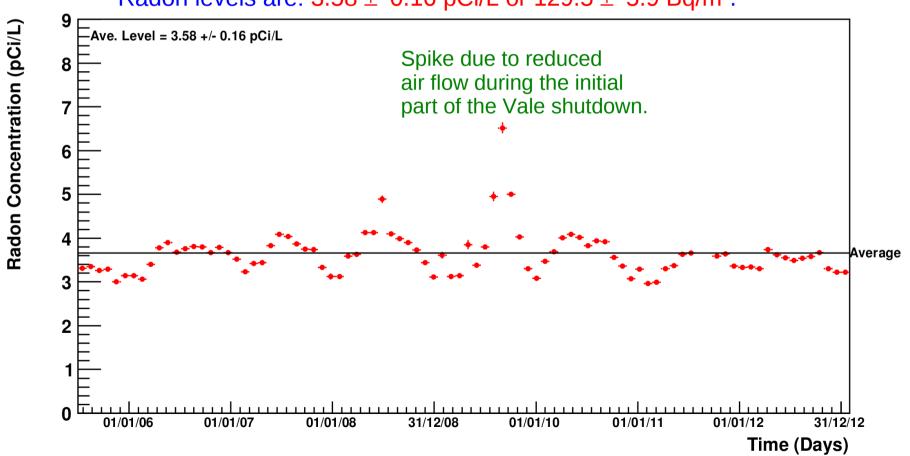

Material Screening

Radon Emanation Chambers

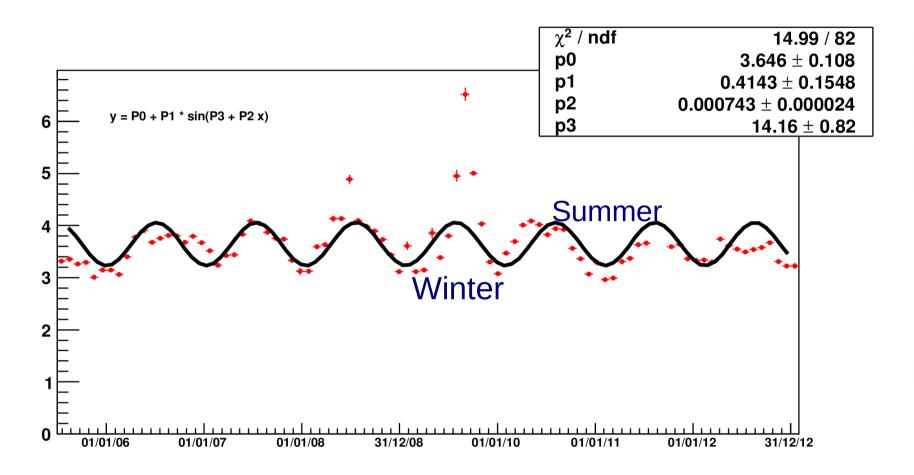
- Used extensively for counting materials used in the SNO experiment.
- sensitivity ~50 decays per day.


ICP-MS

- Association with facility at NRC (National Research Council)
 ICP-MS facility in Ottawa and with GeoLabs in Sudbury.
- NRC facility can be tuned to maximize sensitivity to U and Th at sub ppt levels. K limits to < 100 ppb.

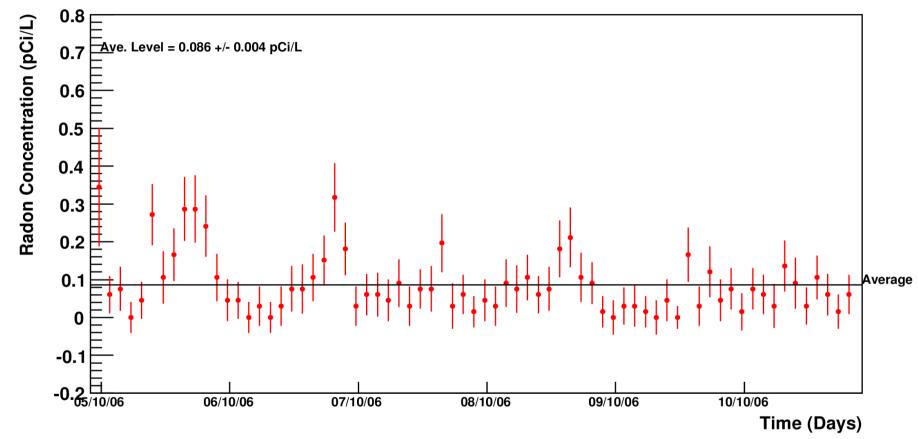

SNOLAB Radon Levels Without Fresh Air

Radon levels: $15.94 \pm 3.09 \text{ pCi/L}$ or $589.8 \pm 114.3 \text{ Bq/m}^3$.



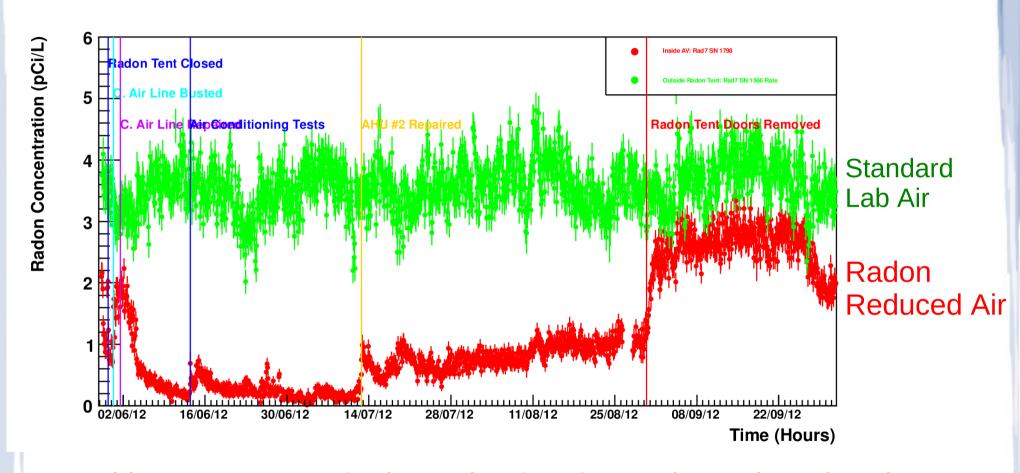
Radon Levels at SNOLAB With Fresh Air (Normal Laboratory Operating Conditions)

Radon continuously monitored for the several years now. Radon levels are: 3.58 ± 0.16 pCi/L or 129.5 ± 5.9 Bq/m³.


Radon Level Annual Cycle

The annual cycle corresponds to 363.21 +- 29.73 days, the expected cycle is one year.

Achievable Radon Levels Using Compressed Air Supplied From Surface


Radon levels: $0.086 \pm 0.004 \text{ pCi/L or } 3.18 \pm 0.15 \text{ Bg/m}^3$.

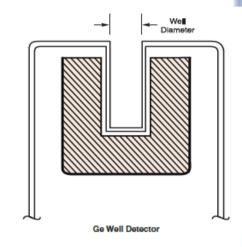
To use this air, specialized filters have to be used to ensure that all particulate matter is removed from the air before it is used.

To achieve lower levels of radon, radon scrubbing systems would have to deployed. **FNAL Tuesday Seminar**

Radon Reduction Room (SNO+ Experiment)

With proper controls the radon levels can be reduced to that of the input compressed air.

Future Low Background Counting At SNOLAB


Two new low background high purity Ge Counters were ordered from Canberra

One counter is a p-type coaxial detector and the other is a well detector. Canberra also supplied a specially built shield for the well detector.

However, the well detector would not fit in the supplied shielding setup as the base of the well detector was too large for the copper disks and the vacuum tube connecting the dewar with the detector was too short for the shielding thickness.

The well detector was sent back to Canberra to be rebuilt to fit the shielding, the detector is now back at SNOLAB and being characterized.

The shielding was slightly modified to allow the coax detector to fit so that the coax detector could be tested.

Future Low Background Counting At SNOLAB

The well detector shielding was slightly modified to allow the coax detector to fit so that the coax detector could be tested.

The coax detector was then run inside the well detector shielding to characterize the backgrounds in the hope the detector has backgrounds less than the PGT detector, which we used as the basis for maximum background requirements.

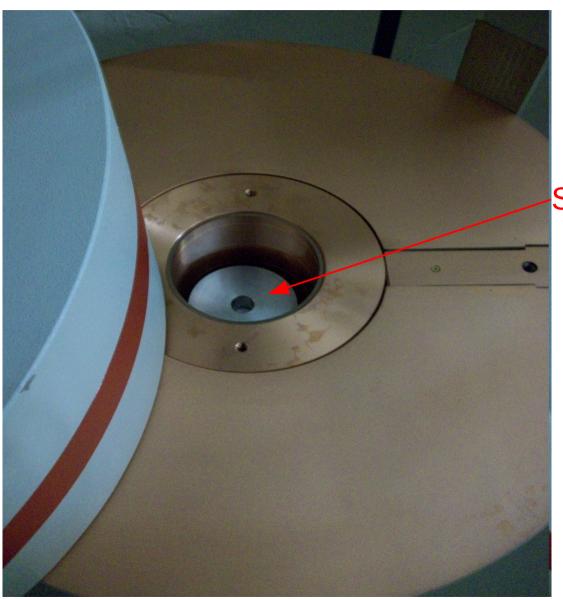
However, it was determined that the coax detector is anything but low in backgrounds. It has substantial amounts of ²³²Th and ²³⁵U, the other backgrounds are similar to those observed from the PGT counter.

Future Low Background Counting At SNOLAB Canberra Coax Detector

The background levels for a true ultra-low background detector should be no more than 100 counts/year from U and Th chain events.

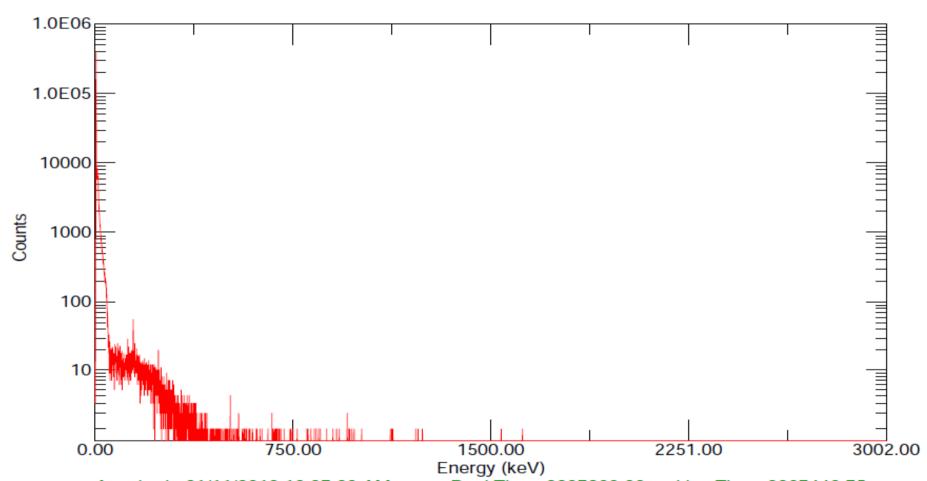
The activities present are:

- ²²⁸Th progeny at 30 counts/day
- ²²⁸Ra progeny at 30 counts/day
- ²³⁸U progeny at 500-600 counts/day, although below ²²⁶Ra the rate is only about 5 counts/day.
- ⁴⁰K at 18 counts/day


Canberra has sent SNOLAB many components to determine where this background is coming from, but so far there is no smoking gun. The Coax detector is now at Canberra being refurbished in a similar manner as the well detector.

Canberra Well Detector at SNOLAB

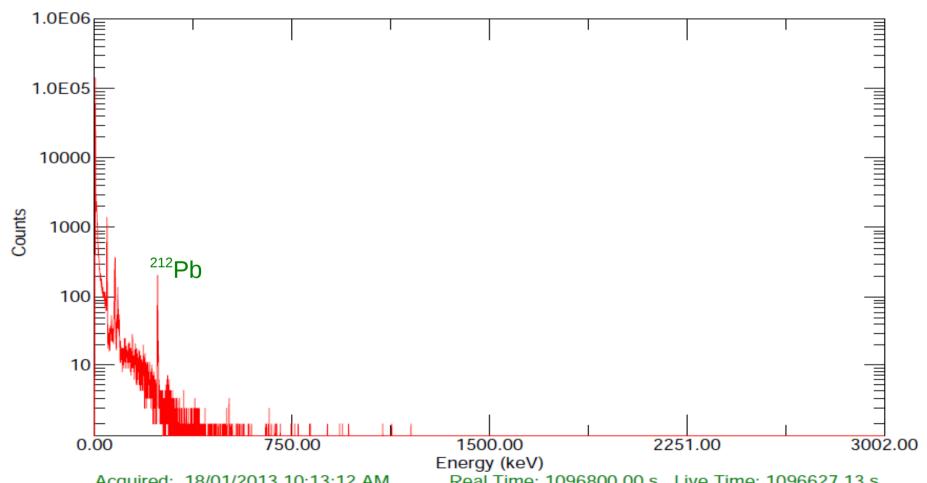
Canberra Well Detector at SNOLAB


Sample Well

Sample Bottle Volume is 3 ml

Well Detector Background Spectrum

Acquired: 21/11/2012 10:37:00 AM File: C:\HPGe\well\121121\filter.chn


Detector: #1 WELL

Real Time: 3307800.00 s. Live Time: 3307440.75 s. Channels: 8192

Well Detector Example Spectrum (Concentrated Water Sample from SNO+ Acrylic Vessel)

filter

UPW wash, AV sector 5, 3.6 L UPW evaporated

Acquired: 18/01/2013 10:13:12 AM File: C:\HPGe\well\130118\filter.chn

Detector: #1 WELL

Real Time: 1096800.00 s. Live Time: 1096627.13 s.

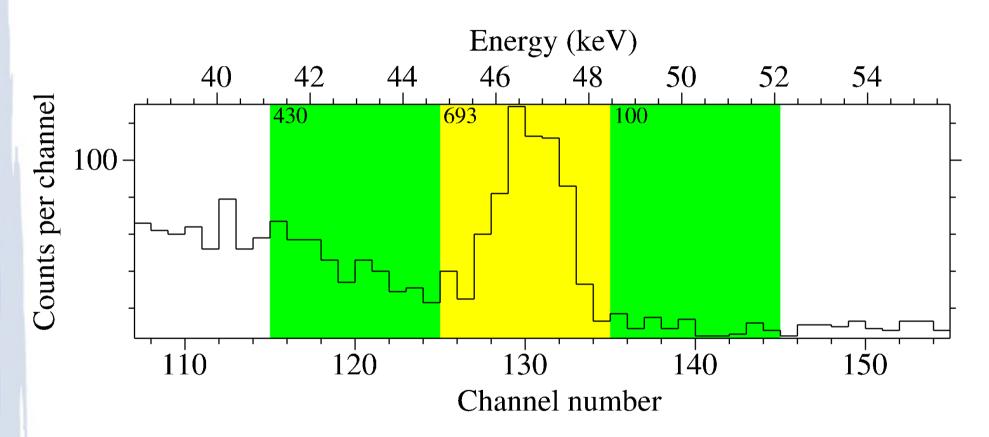
Channels: 8192

Canberra Well Detector Status

Background run completed (38 days).

```
^{238}U 0.029 ± 0.058 decays per day (10.59 ± 21.17 decays per year)
```

 232 Th 0.048 ± 0.063 decays per day (17.52 ± 23.00 decays per year)


 40 K 0.0 \pm 0.02 decays per day (0.0 \pm 7.3 decays per year)

²¹⁰Pb not observed

Total backgrounds at the level of 30 counts / year.

- Calibration source approval is nearly completed, therefore efficiency and background can be calculated for each gamma soon.
- Samples for SNO+ and DEAP have been counted, final results awaiting efficiency measurement.
- Ability to measure small samples, sensitive to gamma energies between 10 keV and 300 keV, therefore can measure several gammas from ²³⁸U, ²³⁵U and ²³²Th but not very sensitive to ⁴⁰K.
- Ability to directly measure ²¹⁰Pb.

²¹⁰Pb Measurement

Concentrated sample of leachate from SNO+ Acrylic Vessel

SNOLAB Low Background Laboratory (under construction)

A new dedicated space is being constructed at SNOLAB for a low background lab located in the South Drift (former refuge station).

This drift is somewhat isolated from other drifts and is inaccessible to large equipment (fork lift). This will help reduce micro-seismic noise which can effect Ge detectors.

Increased air flow and perhaps other radon reduction techniques will be used. It is known that the compressed air from surface has substantially less radon than the lab air and can be used to reduce radon levels from 135-150 Bq/m³ to 1-5 Bq/m³.

Space can accommodate 3-5 Ge detectors, XRF, radon emanation chamber and have room for other types of counters which would benefit from low-cosmic ray background.

Ongoing Improvements and R&D

- Improved neutron shields (detector response, spectrum)
- Improved material selection (more sensitive, better radiopurity e.g. PbWO4 with archaeological lead)
- Active shielding
- Going deeper underground
- Storage of freshly made construction materials underground
- Multisegmented crystals or multiple crystals
- Collaboration with producers (e.g. depleted Ge, crystal growing, Cu electroforming underground)
- The "ultimate" ultra-low background facility

Ongoing Improvements and R&D

- Future experiments need more sensitive screening techniques (< μBq/kg for 226Ra) ⇒ use of today's (e.g. CTF) or tomorrow's (e.g. GERDA) most sensitive detectors for screening.
- Future experiments need dedicated and highly sensitive screening and test techniques for measuring and monitoring surface contaminations (development and adaptation of existing techniques and methods to need, e.g. LA-ICP-MS).
- Reorganisation and optimisation of existing screening facilities is necessary, because they are costly and measurement times can be rather lengthy.
- Harmonisation of how to report data and intercomparison programs for ultra low-level measurement techniques.

Research Applications

- Ultra low-level chemistry
- Particle astrophysics (material and techniques applicable to rare events experiments)
- Space science (e.g. micro meteorites, Mars samples, cosmic activation products, comet tail samples)
- Atmospheric samples ((very) short lived isotopes, radionuclide composition, stratospheric samples)
- Ocean samples (e.g. deep ocean water ⁶⁰Fe)
- In general application of low background techniques to interdisciplinary fields:
 - Low-level environmental radioactivity measurement and monitoring
 - Radiodating (extension of determined ages towards the past)
 - Geophysics (palaeoseismology, palaeogeology, sedimentation)

Common Database

- Currently each counting group has separate databases, some are public and some are very private.
- Common goal of low background counting groups is to have a common database assessable to anyone interested in low background studies, with as much data available as possible.
- Standardize units to mBq/kg.
- The AARM working groups meet regularly and it is expected that by LRT2013 that the database will be up and ready to add data.
- Ongoing work to determine what the best software is for the database, currently planning to use CouchDB.
- Database could be hosted by Cloudant with backup databases expected to be at SNOLAB with at least two other sites.

Summary

• SNOLAB PGT HPGe low background counting system has run continuously for the past since 2005 and has counted 350 samples so far.

Counting queue is long at ~10 samples, this sometimes limits when samples can be counted in a timely manner.

The counter(s) is available for all SNOLAB experiments and can be made available to non-SNOLAB experiments upon request (eg. DM-ICE).

 Two new Canberra Ge detectors were delivered to SNOLAB, but need refurbishing since they are not ultra-low background as expected.

The new counters should allow much higher sensitivity, effort underway to ensure all materials are low background. The well detector will be used for very specialized small samples such as vapourized acrylic.

- Specialized counting can be done using the ESC or Alpha-Beta Counters and materials can be emanated for Radon.
- New low background counting lab is being constructed at SNOLAB, final preparations are now underway.