Background simulations and
shielding calculations

Vitaly A. Kudryavtsev

University of Sheffield

Contributions from many others



Outline

Note 1: results are relevant to many experiments and techniques
(mainly dark matter).

Note 2: here | present mainly our work + some graphs from other
groups and experiments.

Note 3: see next talk by Henrique Araujo and talk to Henrique and
Luciano Pandola if you want to learn more about GEANT4.

Note 4: see the extended version of my talk at SNOLAB2010.
Neutrons and gamma-rays from radioactivity.

— Spectra of neutrons.

— Gamma-ray and neutron transport through the shielding.

— Different shielding configurations.

— Background from detector components and intrinsic radio-purity.
Muon-induced neutrons.

— Neutron production rate by muons in different materials.

— MC for specific detectors: common features and specific
predictions.

— Water Cherenkov veto.
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Neutron yield [ neutrons -MeV™"' s-cm?]

Neutron spectra in different rocks
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Neutron spectra from modified SOURCES4A (Wilson et al. Sources4A. Technical
Report, LA-13639-MS (1999); Carson et al. Astropart. Phys. 21 (2004) 667). Spectra
and rates strongly depend on the material (composition).

Plots taken from Tomasello et al. NIMA 595 (2008) 431; Astropart. Phys. 34 (2010) 70;
V. Tomasello, PhD Thesis, Univ. of Sheffield (2009).

1% of hydrogen reduces neutron flux on the rock face (after transport) by a factor
4.7 (1.8) above 100 keV (1 MeV).
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Different calculation techniques
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- TALYS + Mei et al. NIMA 606 (2009), 651: 3.4x10-2 (U), 10.8x10-'2 (Th) cm- s*! ppb-".
« EMPIRE-2.19 + modified SOURCES4A: 2.8x10-12 (U), 8.4x10-'2 (Th) cm-3 s-1 ppb-1.
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Cross Section (barns)

Validation of EMPIRE and SOURCES
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Validation of SOURCES4A
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Neutron spectra from Pu-Be homogeneous source (thick target, left)
and from 5.0 MeV alphas incident on aluminum oxide slab (right);
from SOURCES4A manual.
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Flux [neutrons - keV™'-s'-cm?]

Neutrons in water and CH,
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Neutron attenuation in water and CH,, - V. Tomasello, PhD Thesis, Univ. of
Sheffield (2009); Tomasello et al. Astropart. Phys. 34 (2010), 70.

Inelastic scattering in lead helps with neutron attenuation at E > 1 MeV.
~25 cm Pb + 50 cm of CH, is ok for DM experiments.
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Gamma-ray attenuation in lead
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Energy, keV

A - spectrum from rock;
B - behind 5 cm of lead;
C -10 cm of lead;

D - 20 cm of lead;

E - 30 cm of lead;

F - 20 cm of lead and 40
g/cm? of CH.,,.

From M. J. Carson et al.,
Nucl. Instrum. and Meth. A
548 (2005) 418.

Or several layers
(XENON100): polyethylene,
lead, polyethylene, copper
(or archeological lead but
be careful: there may be U).
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Attenuation in water
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Spectra of gamma-rays from U in concrete. On
average x10 suppression per 0.5 m of H,0.
See also talk by P.Cushman.

The background from
concrete may dominate
over that from rock.

If d = 30 cm (concrete)
only <5% of radiation
comes from rock.

Required suppression
of gamma-rays fora 1t
experiment is achieved
with 3 m of water
(discrimination <10-4).

Holes (pipes, readout)
may be important.

Similar attenuation
calculated for
XENON1T (worse
discrimination): Selvi,
Talk ay IDM2010.
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Submarine vs swimming pool

<—— Swimming pool

Submarine

l

Assume 1 ppb U/Th in
steel in equilibrium.

About 17 nuclear recoils
per year at 10-50 keV in
100 kg of Ge from the
water tank stainless steel
vessel (2 cm thick) along

the walls. /

About 10° electron recoils per year at 10-50 keV in 100 kg of Ge from the
water tank stainless steel vessel (2 cm thick) along the walls.

-«
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Detector components

Consider dark matter detector with Ge target.

Source: 1.6 ppt U, 5.7 ppt Th, 0.01 mBqg/kg %°Co in ~3 tonnes of Cu
(upper limits from G. Heusser, Talk at LRT 2004; M. Laubenstein et
al., Appl. Radiat. Isot. 53 (2004) 167). Event rate per tonne of target
(EURECA: Ge/CaWO,) per year at 10-50 keV: < 10° electron recoils,
<1 nuclear recoil.

Source: 1 ppb U/Th in 100 kg of stainless steel close to the target.
Event rate per tonne of target per year at 10-50 keV: ~4x10°3

electron recoils, ~3 nuclear recoils.

No more than 20-30 kg of materials with ~1 ppb concentrations of
U/Th.

Liquid Xe target: fiducialisation should help with discrimination
against background gammas and neutrons.
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Intrinsic contamination (Ge)
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1 ppt U/Th in equilibrium, 1 ppb K; single hits.

With 1 tonne target and 10-° discrimination factor, the
concentrations of <0.5 ppt U/Th and <1 ppb K are required -
almost there with EDELWEISS-II.
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Zenith and azimuth angular distributions of muons from MUSUN (black) at
LSM compared with data from the Frejus proton decay experiment (red).

MUSIC and MUSUN, V. Kudryavtsev, Comp. Phys. Comm. 180 (2009) 339.
The MUSUN code exists for LNGS, LSM, Soudan, SNOLab, Boulby, and for

flat surface in standard rock and water.
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Neutron yield in different materials
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Only two recent measurements
with fully modelled setups are
shown (~280 GeV muons).
Slightly higher rate in CH, and
lower rate in Pb were observed
compared to simulations.

Neutron capture rate is
converted into the neutron yield -
requires certain assumptions
about neutron spectra, transport
etc, taken from MC. Direct
comparison between data and
MC is crucial.

Different versions and different
models give different results.
Various models were checked by
M. Bauer (talk at IDM04) and
others: <30% difference.
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Neutron yield in different materials

-2

10
L 5 o
g z £
R !
=
E
==
5]
2 3
& |
2 107
5 .
2 s FLUKA-1099 [14]
g v FLUKA-2008
O GEANT4 v6.2 [15]
m GEANT4v8.2
4
10 ' ;
10 10

atomic weight
A. Lindote et al. Astropart. Phys., 31 (2009) 366.

29/08/2010, LRT2010, SNOLAB

280 GeV muons.

The trend is shown by the
dashed (FLUKA-1999) and
solid (GEANT4 6.2) lines.

Simulation results for
different materials deviate
significantly from the lines.

It is not excluded that the
model is more or less correct
for some materials but does
not give accurate predictions
for another one.

More measurements in
different materials are needed
supported by full MC.
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neutron production rate, n/u/g/em%/MeV

Neutron spectra at production
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Left: CH,, 280 GeV muons, GEANT4 9.2 (V. Tomasello, 2009); also M. Horn,
H. Araujo, M. Bauer, A. Lindote, R. Persiani and others with various
versions of GEANTA4.

Right: spectra in CH,, NaCl and lead; <E> = 65.3 MeV, 23.4 MeV and 8.8 MeV
(A. Lindote et al. Astropart. Phys., 31 (2009) 366). Neutron spectrum

strongly depends on the material.
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Angular dependence

10!
= -
© 102 En = 10-100MeV
-9
c
o
g
2103 En < 10MeV
© b
? i. SeE. l.'-.=.‘."!'|.'“|"."5
£ En > 100MeV _,-éf e
S 10* ‘&7&’ -
™ ‘-‘:--'II' e £
) " E"
00 08 06 1024 02 00 02 04 06 08 10

cosO(u,n)

Figure 3.9: Angular distribution relative to the total neutron yield of neutrons
produced in muon nuclear reactions with Geantf 8.2.p01. For
all neutron kinetic energies (black) or the respective kinetic energy
ranges, Ey, > 100 MeV (blue), 10 MeV < E;, < 100 MeV (green)
and E,; < 10 MeV (purple). The inlet shows the definition of the
angle # with respect to the incident muon. See text for details.

M. Horn. PhD thesis. Univ. of Karlsruhe (2007).

Angular distribution of
emitted neutrons.

High-energy neutron
emission is not isotropic
but is correlated with the
muon direction.

Hence the signal from
high-energy neutrons
travelling long distance to
the detector (from rock)
may be accompanied by
the energy deposition
from a muon or muon-
induced cascade.

Production and transport
of all particles in a
cascade is important for
correct evaluation of
neutron-induced signal.
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Spectra in detectors: LXe (2005)
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Fig 11. Differential spectra of the total energy deposited in the
liguid xenon (LXe) target as predicted by GEANT4 and
FLUKA and in the veto scintillator according to GEANT4 (the
latter is scaled down by a factor of 5 x 10%).
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Fig. 12. NR energy spectrum in the liquid xenon detector as a
function of the visible energy deposited by all nuclear recoils in
each ewvent. The spectra include ‘mixed’ events involving
electromagnetic energy deposits, not just ‘pure’ nuclear recoils,
but only the energy left by NRs was counted.

Araujo et al. NIMA 545 (2005) 398. Boulby lab, 250 kg of xenon, shielding - 30
cm Pb (ext), 40 g/cm? CH, (int); only 2-3 single recoils per year at 10-50 keVnr
(w/o veto); <1 per year with veto. (Nuclear recoil quenching = 0.2.)

29/08/2010, LRT2010, SNOLAB

Vitaly Kudryavtsev 18



Muon-induced neutrons: Ge target
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Spectrum of nuclear recoils in a Ge
crystal (300 g each, 1 t total) - all
multiplicities. Other energy depositions
are ignored. 3.7 years’ statistics.
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are ignored. The energy
threshold - 10 keV.
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Muon-induced neutrons in EURECA

LSM - 3 m water shielding
around the cryostats.

Only single nuclear recoils
(without any other energy
deposition): 1.6%£0.5
events/year at E > 10 keV
keV in 1t (independently of
the signal in veto - veto is
not switched on).

No events in
anticoincidence with veto.

One event with energy
deposition in veto of only
0.278 GeV. Others - with

E.ep, > 1 GeV.

In CaWO, most events are
O recoils at high energies.

number of events
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Conclusions (mainly for DM)

Shielding for one-tonne scale experiment (10-1° pb, discrimination ~10-°):
— 20-25 cm of lead + 40-50 g/cm? of CH,, or
— 3 m of water.

Water shielding along the walls is not efficient: many background events
from the water tank walls if no additional shielding in the lab is in place.

Ultra-pure copper (< 10 ppt U/Th) is OK as a material for detector
vessels/cryostats. Materials with concentrations ~ 1 ppb should not be
present in large quantities (<20-30 kg).

Still an uncertainty of x2 in measured and simulated neutron production
rate by muons, especially in high-Z targets. We need to simulate and
compare with the measurements exactly what is measured - in most cases
this is neutron capture rate, not the neutron production rate.

Optimistic results for muon-induced neutrons (with uncertainty about x2).

— 1.6 * 0.5 events/year/tonne - single recoils above 10 keV in EURECA at
LSM. No event survives a veto cut (E > 0.2 GeV) in 11.1 years of
simulated statistics.

— Shielding configuration is important.
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