Production and suppression of ¹¹C in the solar neutrino experiment Borexino

Quirin Meindl

Technische Universität München

On behalf of the Borexino Collaboration

Low Radioactivity Techniques, Sudbury, August 29th 2010

photo: BOREXINO calibration

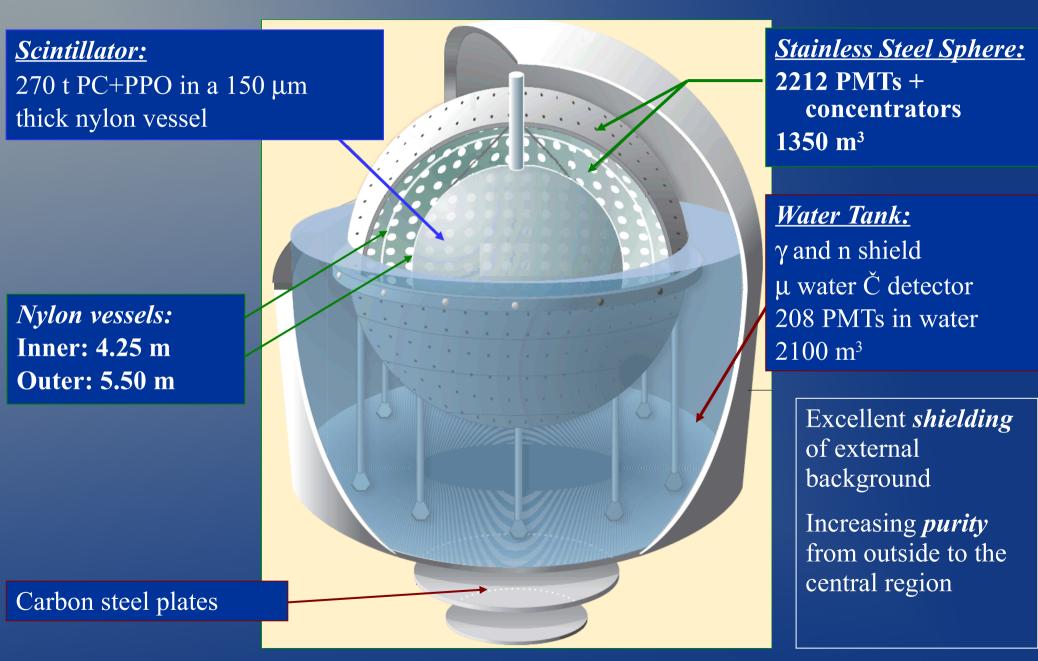
The Borexino collaboration

Dubna JINR (Russia)

Kurchatov Institute (Russia)

Jagiellonian U. Cracow (Poland)

Heidelberg (Germany)


Munich (Germany)

The Borexino Experiment

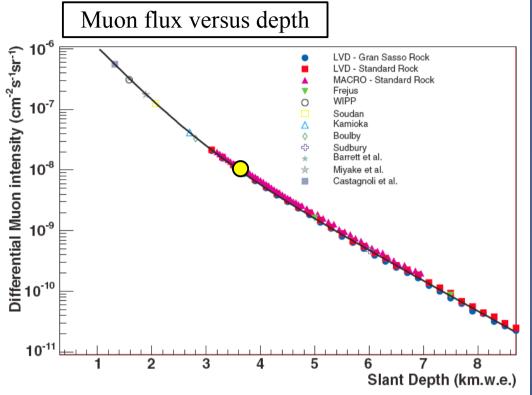
Neutrino electron scatterning: $v e \rightarrow v e$

- Liquid scintillator technology (300 t)
- Low energy threshold: $\sim 60 \text{ keV}$
- Good energy resolution: $\sim 4.5\%$ @ 1 MeV
- Extreme radiopurity
- Sensitivity on sub-MeV neutrinos
- Data taking since May 16th 2007

The Borexino Experiment

The Borexino Experiment

• Internal background

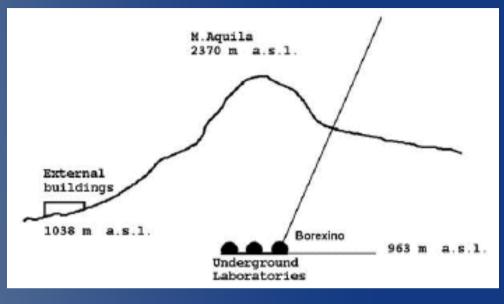

²³⁸ U	$\sim 2 \ge 10^{-17} \text{ g/g}$
²³² Th	$\sim 5 \ge 10^{-18} \text{ g/g}$
²¹⁰ Po	$\sim 10 \text{ counts / (d t)}$
⁸⁵ Kr	~ 0.30 counts / (d t)
²¹⁰ Bi	~ 0.15 counts / (d t)

Ultrahigh radiopurity!

• Muons

Muon shielding requires an underground site

Shielding of atmospheric muons



Kudryavtsev, Talk at JRA1 meeting 10/07/2006

Laboratori Nazionali del Gran Sasso

Shielding provided by rock coverage: ~ 3800 m.w.e.

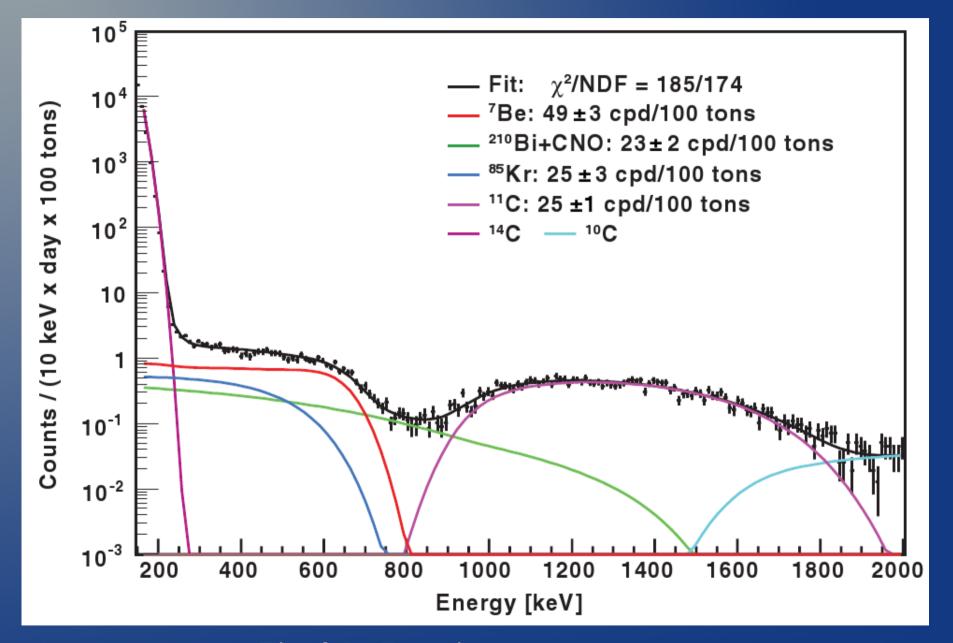
Residual μ -rate: 1.16 m⁻² h⁻¹ Mean μ -energy: 320 GeV

Residual μ produce secondaries in electromagnetic and hadronic showers within the detector: Gammas, pions (π^+,π^-), protons, electrons and neutrons

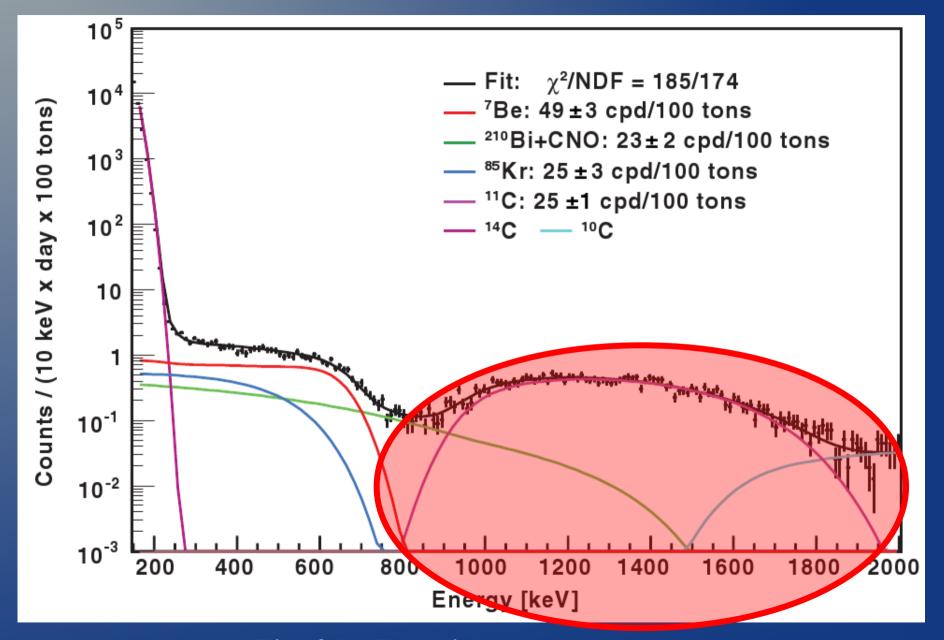
Isotope	Expected rates
	$counts day^{-1} (100 t)^{-1}$
$^{8}He + ^{9}Li$	0.034 ± 0.007
9C	0.077 ± 0.025
^{8}B	0.11 ± 0.02
^{6}He	0.26 ± 0.03
^{8}Li	0.070 ± 0.017
^{11}Be	< 0.34
^{10}C	1.95 ± 0.21
^{11}C	14.55 ± 1.49
^{7}Be	0.34 ± 0.04

The μ and its secondaries can produce in-situ radionuclides in the organic liquid scintillator by interacting with ¹²C.

Measurement of production rates of muon-induced radionuclides by the Borexino collaboration at CERN (NA54 Experiment)


T. Hagner, PhD Thesis, Technische Universität München

Residual μ produce secondaries in electromagnetic and hadronic showers within the detector: Gammas, pions (π^+,π^-), protons, electrons and neutrons


Isotope	Expected rates $counts day^{-1} (100 t)^{-1}$	The μ and its secondaries can produce in-situ radionuclides in the organic liquid scintillator
${}^{8}He + {}^{9}Li$ ${}^{9}C$	0.034 ± 0.007 0.077 ± 0.025	by interacting with 12 C.
^{8}B	0.11 ± 0.02	
^{6}He	0.26 ± 0.03	
^{8}Li	0.070 ± 0.017	Mast annuin ant a source and is used in the is 110
^{11}Be	< 0.34	Most prominent cosmogenic radionuclide is ¹¹ C $(\tau = 29.4 \text{ min}).$
^{10}C	1.95 ± 0.21	
^{11}C	14.55 ± 1.49	Decays: ${}^{11}C \rightarrow {}^{11}B + e^+ + v$
^{7}Be	0.34 ± 0.04	

Measurement of production rates of muon-induced radionuclides by the Borexino collaboration at CERN (NA54 Experiment)

T. Hagner, PhD Thesis, Technische Universität München

Fit of the Borexino energy spectrum

Fit of the Borexino energy spectrum

Production of ¹¹C by muons

E_{μ} (GeV)	100	190	285	320	350		
Interaction	Rate $(10^{-4}/\mu/m)$						
$^{12}{ m C(p,p+n)^{11}C}$	1.8	3.2	4.9	5.6	5.7		
${}^{12}{ m C}({ m p,d}){}^{11}{ m C}$	0.2	0.4	0.5	0.6	0.6		
${}^{12}{ m C}(\gamma,{ m n}){}^{11}{ m C}$	19.8	27.0	34.1	46.6	38.4		
${ m ^{12}C(n,2n)^{11}C}$	1.4	2.6	3.8	4.4	4.6		
$^{12}{ m C}(\pi^+,\pi+{ m N})^{11}{ m C}$	1.0	1.8	2.8	3.2	3.3		
$^{12}{ m C}(\pi^-,\pi^-{+ m n})^{11}{ m C}$	1.3	2.3	3.6	4.1	4.2		
Invisible	0.9	1.6	2.4	2.7	2.9		
Total	25.4	37.3	49.7	54.4	57		
Measured	$22.9{\pm}1.8$	$36.0{\pm}2.3$					

FLUKA simulations of ¹¹C production channels

D. Franco, PhD Thesis, Universita degli studi di Milano

Production of ¹¹C by muons

E_{μ} (GeV)	100	190	285	320	350		
Interaction	Rate $(10^{-4}/\mu/m)$						
$^{-12}{ m C(p,p+n)^{11}C}$	1.8	3.2	4.9	5.6	5.7		
${}^{12}{ m C}({ m p,d}){}^{11}{ m C}$	0.2	0.4	0.5	0.6	0.6		
${}^{12}{ m C}(\gamma,{ m n}){}^{11}{ m C}$	19.8	27.0	34.1	46.6	38.4		
${ m ^{12}C(n,2n)^{11}C}$	1.4	2.6	3.8	4.4	4.6		
${ m ^{12}C}(\pi^+,\pi+{ m N}){ m ^{11}C}$	1.0	1.8	2.8	3.2	3.3		
$^{12}{ m C}(\pi^-,\pi^-{+}{ m n})^{11}{ m C}$	1.3	2.3	3.6	4.1	4.2		
Invisible	0.9	1.6	2.4	2.7	2.9		
Total	25.4	37.3	49.7	54.4	57		
Measured	$22.9{\pm}1.8$	$36.0{\pm}2.3$					

FLUKA simulations of ¹¹C production channels

D. Franco, PhD Thesis, Universita degli studi di Milano

=> 95% of all ¹¹C is produced with at least 1 free neutron in the final state

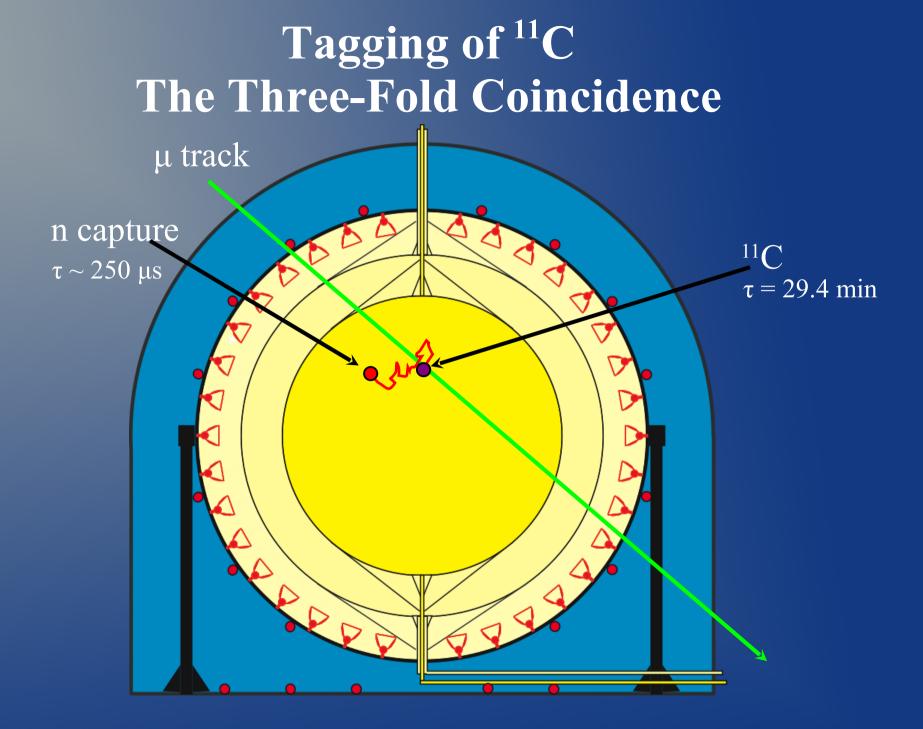
Production of ¹¹C by atmospheric μ out of ¹²C μ (+secondaries) + ¹²C $\rightarrow \mu$ (+secondaries) + ¹¹C + n

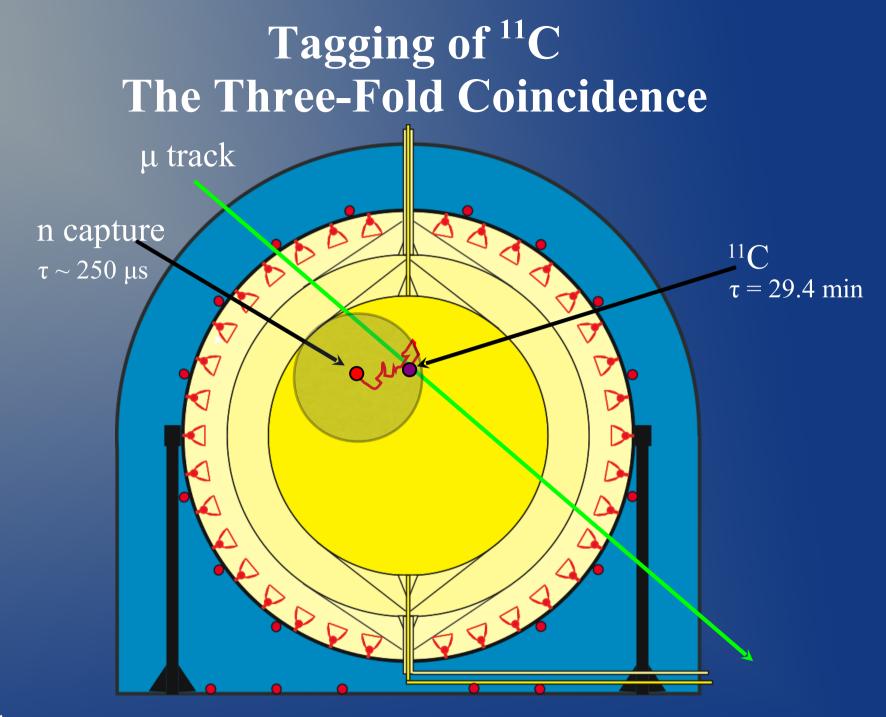
Production of ¹¹C by atmospheric \mu out of ¹²C \mu(+secondaries) + ¹²C \rightarrow \mu(+secondaries) + ¹¹C + n

Free neutrons get captured on Hydrogen: $n + p \rightarrow d + \gamma$ $E_{\gamma} = 2.2 \text{ MeV}$ Range of free neutron:few dozen cmMean neutron capture time:~250 µs

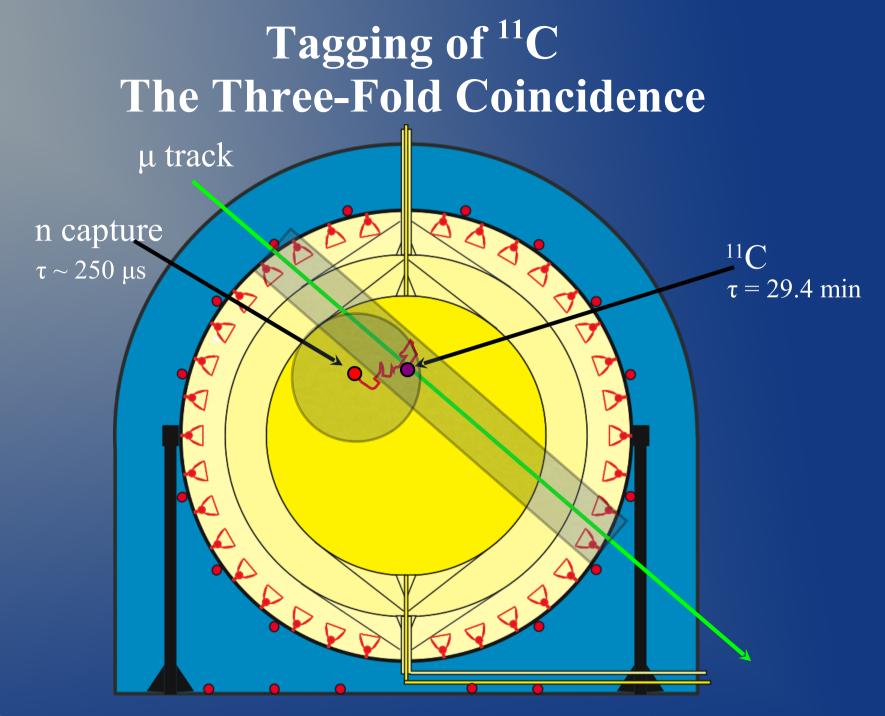
Production of ¹¹C by atmospheric μ out of ¹²C μ (+secondaries) + ¹²C $\rightarrow \mu$ (+secondaries) + ¹¹C + n

Free neutrons get captured on Hydrogen: $n + p \rightarrow d + \gamma$ $E_{\gamma} = 2.2 \text{ MeV}$ Range of free neutron:few dozen cmMean neutron capture time:~250 µs

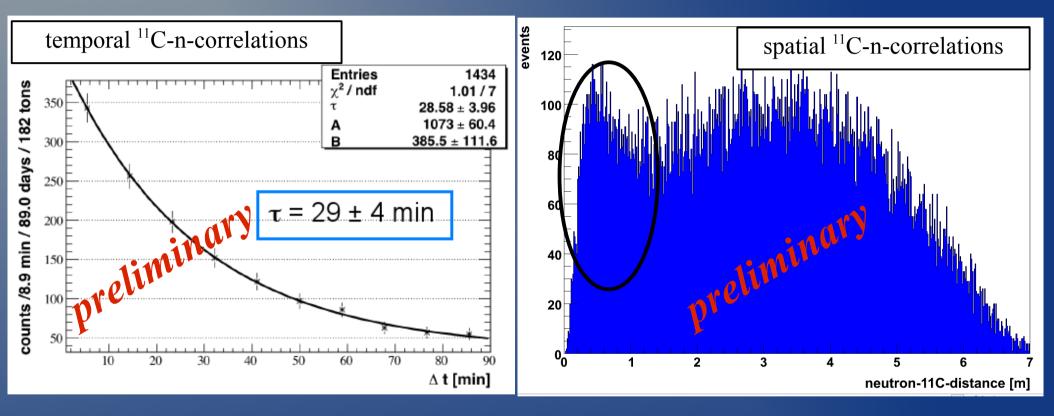

Coincidence of μ and neutron-capture flags production of ¹¹C isotopes (and of many cosmogenic radionuclides in general).


Production of ¹¹C by atmospheric \mu out of ¹²C \mu(+secondaries) + ¹²C \rightarrow \mu(+secondaries) + ¹¹C + n

Free neutrons get captured on Hydrogen: $n + p \rightarrow d + \gamma$ $E_{\gamma} = 2.2 \text{ MeV}$ Range of free neutron:few dozen cmMean neutron capture time:~250 µs

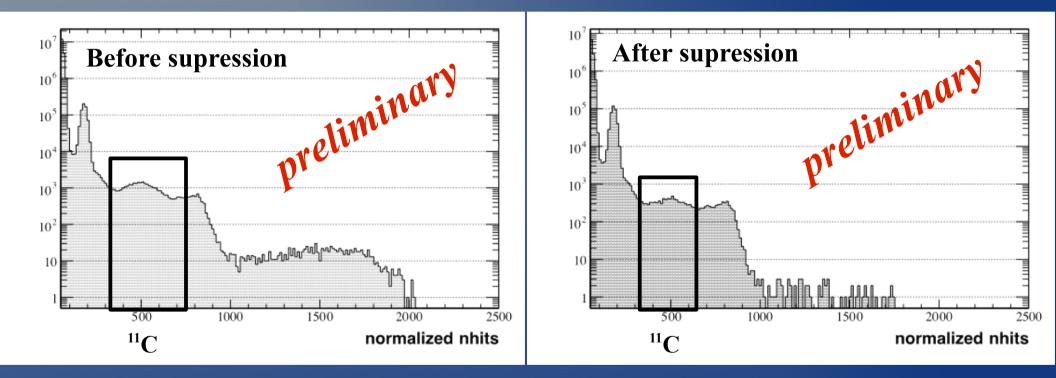

Coincidence of μ and neutron-capture flags production of ¹¹C isotopes (and of many cosmogenic radionuclides in general).

This so-called Three-fold Coincidence (TFC) of muon, neutron and ¹¹C decay can be used to reject ¹¹C from data.



¹¹C can be rejected with proper cuts in space and time around the neutron.

¹¹C can be rejected with proper cuts in space and time around the neutron. Using also the muon: target-mass-time loss can be reduced.

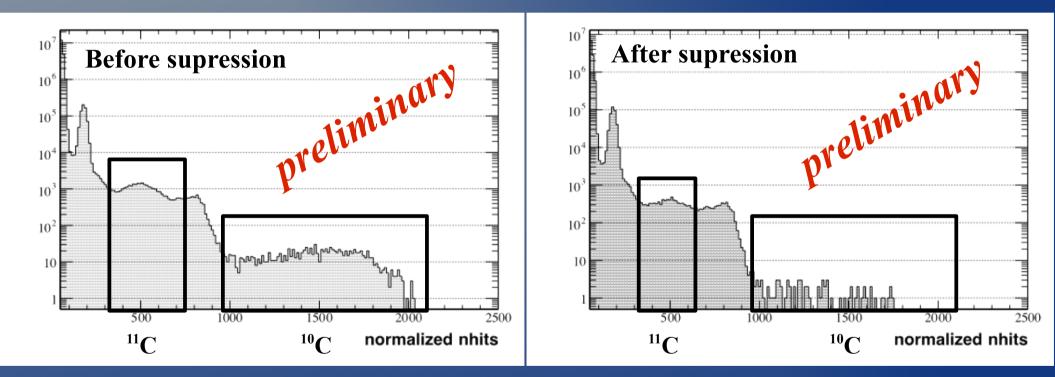

Spatial correlations

Temporal correlations Literature value : $\tau(^{11}C) = 29.4$ min

Strong correlations in space and time

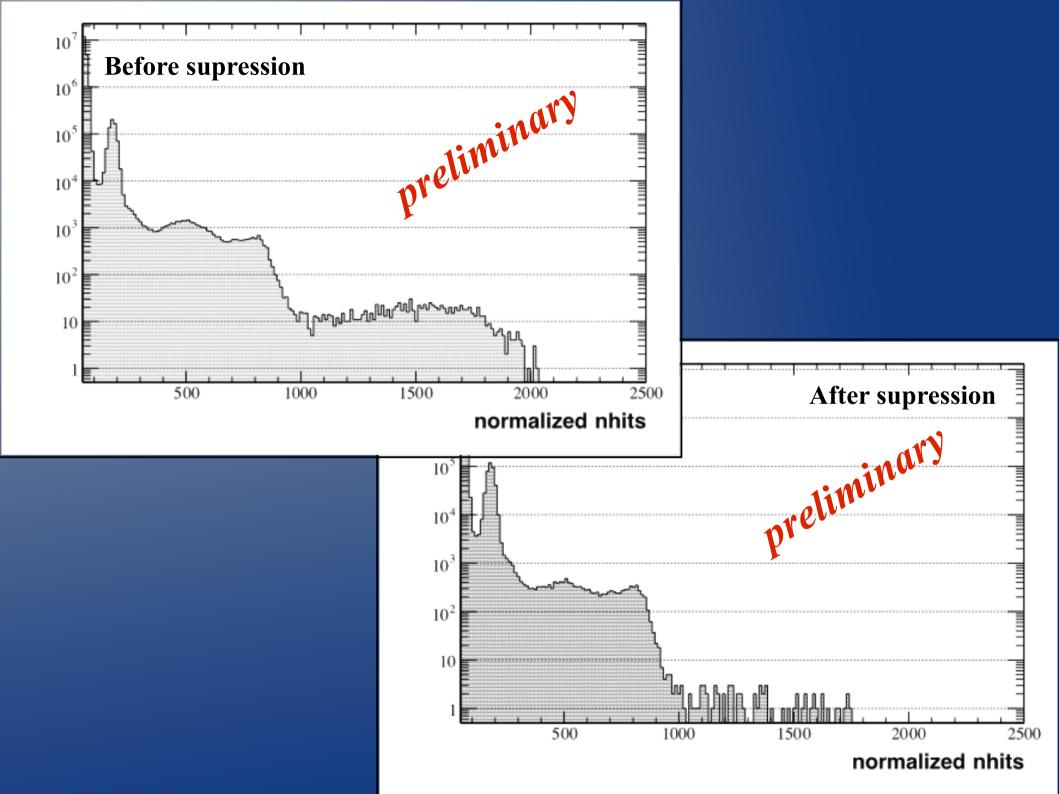
Example of ¹¹C supression:

Reject events within 90min and 1m to a cosmogenic neutron



Supression efficiencies: ¹¹C ($\tau = 29.4$ min) : Reduction of the target-mass-time:

~ 60% ~ 16%


Example of ¹¹C supression:

Reject events within 90min and 1m to a cosmogenic neutron

Supression efficiencies: ¹¹C ($\tau = 29.4$ min) : Reduction of the target-mass-time:

~ 60% ~ 16%

Outlook Advanced TFC

Muon track

Vetoing only the intersection of the muon track cylinder and the neutron spheres => less target-mass-time reduction

Run start

Maintenance or calibration runs interrupt normal data taking => muon/neutrons of ¹¹C production are not detected => ¹¹C decay is untaggable This ¹¹C can be rejected by vetoing the first 30min of a run after a long data taking interruption.

Outlook Advanced TFC

Muon track Vetoing only the intersection of the muon track cylinder and the neutron spheres => less target-mass-time reduction

Run start

Maintenance or calibration runs interrupt normal data taking => muon/neutrons of ¹¹C production are not detected => ¹¹C decay is untaggable This ¹¹C can be rejected by vetoing the first 30min of a run after a long data taking interruption.

Full supression capability of Borexino still under investigation! However, tagging efficiencies of up to 88% seem feasable!

Summary

- The Borexino Experiment
- Muon-induced secondaries and radionuclides
- Tagging of ¹¹C: The Three-Fold Coincidence
- Advanced Three-Fold Coincidence

Thank you for your attention!