

KamLAND Liquid Scintillator and Gas Purification

Sei Yoshida Research Center for Neutrino Science, Tohoku University

KamLAND Collaboration

S.Abe¹, T.Ebihara¹, S.Enomoto¹, K.Furuno¹, Y.Gando¹, H.Ikeda¹, K.Inoue¹, Y.Kibe¹, Y.Kishimoto¹, M.Koga¹, Y.Minekawa¹, T.Mitsui¹, K.Nakajima¹, K-H.Nakajima¹, K.Nakamura¹, M.Nakamura¹, K.Owada¹, I.Shimizu¹, Y.Shimizu¹, J.Shirai¹, F.Suekane¹, A.Suzuki¹, Y.Takemoto¹, K.Tamae¹, A.Terashima¹, H.Watanabe¹, E.Yonezawa¹, S.Yoshida¹, A.Kozlov², J.Busenitz³, T.Classen³, C.Grant³, G.Keefer³, D.Leonard³, D.MaKee³, A.Piepke³, M.P.Decowski⁴, J.A.Detwiler⁴, S.J.Freedman⁴, B.K.Fujikawa⁴, F.Gray⁴, E.Guardincerri⁴, L.Hsu⁴, K.Ichimura⁴, R.Kadel⁴, K.-B.Luk⁴, H.Murayama⁴, T.O'Donnell⁴, H.M.Steiner⁴, L.A.Winslow⁴, D.A.Dwyer⁵, C.Jillings⁵, C.Mauger⁵, R.D.McKeown⁵, C.Zhang⁵, B.E.Berger⁶, C.E.Lane⁷, J.Maricic⁷, T.Miletic⁷, M.Batygov⁸, J.G.Learned⁸, S.Matsuno⁸, S.Pakvasa⁸, J.Foster⁹, G.A.Horton-Smith⁹, A.Tang⁹, S.Dazeley¹⁰, K.Downum¹¹, G.Gratta¹¹, K.Tolich¹¹, W.Bugg¹², Y.Efremenko¹², Y.Kamyshkov¹², O.Perevozchikov¹², H.J.Karwowski¹³, D.M.Markoff¹³, W.Turnow¹³, K.M.Heeger¹⁴, F.Piquemal¹⁵, and J.-S.Ricol¹⁵

- . Research Center of Neutrino Science, Tohoku University
- 2. IPMU, The University of Tokyo
- 3. Department of Physics and Astronomy, University of Alabama
- 4. Physics Department, University of California Birkeley/ Lawrence Berkeley National Laboratory
- 5. W.K.Kellogg Radiation Laboratory, California Institute of Technology
- 6. Department of Physics, Colorado State University
- 7. Physics Department, Drexel University
- 8. Department of Physics and Astronomy, University of Hawaii at Manoa
- 9. Department of Physics, Kansas State University
- 10. Department of Physics and Astronomy, Louisiana State University
- 11. Physics Department, Stanford University
- 12. University of Tennessee
- 13. Triangle Universities of Nuclear Laboratory/Physics Department, Duke University
- 14. Department of Physics, University of Wisconsin
- 15. CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I

KamLAND Detector

KAMioka Liquid scintillator Anti-Neutrino Detector

KamLAND Detector

Inner Detector Liquid Scintillator (1000 tons)

• Ultra-pure ; U/Th < 10⁻¹⁷ g/g

Dodecane (C12H26): 80%

Pseudocumene : 20% (1,2,4-Trimethyl Benzene) PPO 1.36 g/l (2,5-Diphenyloxazole)

- Plastic Balloon (13 m diameter)
- Mineral Oil : Inner buffer
 - $\rho_{LS} / \rho_{MO} = 1.0004$
- PMTs
 - 1325 of 17-inch and 554 of 20-inch
 - Photo-coverage : 34% → ~ 500 p.e./MeV

<u>Outer Detector</u>

- Water Cherenkov detector ; muon veto
 PMT
 - 225 of 20-inch

KamLAND Underground Facility

Motivation to the Low BG Phase

- Measurement of ⁷Be solar neutrino flux.
- Put more stringent limits on CNO cycle contribution to the solar neutrino flux.
- Reduce ${}^{13}C(\alpha,n){}^{16}O$ background for reactor and geo-v measurements, caused by ${}^{210}Po \alpha$ -decay.

Internal Background of KamLAND

Workshop in Low Radioactivity Techniques @ SNOLab

Required Reduction for Solar Phase

	T _{1/2}	Activities (Before purif.)	Purification Goal	Required Reduction
²¹⁰ Pb	22.3 y	40 mBq/m ³	1 μ Bq/m ³	10 ⁻⁴ ~ 10 ⁻⁵
⁴⁰ K	10 ⁹ γ	2·10 ⁻¹⁶ g/g	10 ⁻¹⁸ g/g	10-2
²³⁸ U	10 ⁹ y	3•10 ⁻¹⁸ g/g	10 ⁻¹⁸ g/g	ОК
²³² Th	10 ¹⁰ y	5•10 ⁻¹⁷ g/g	10 ⁻¹⁶ g/g	OK
⁸⁵ Kr	11 γ	400 mBq/m ³	1 μ Bq/m ³	10 ⁻⁵ ~ 10 ⁻⁶
²²² Rn	3.8 d		< 10 μBq/m³	

Pure Nitrogen Generator

- Newly developed/constructed N₂ generator
 - Supply air : Rn less air from outside of mine
 - N₂ supply capacity : 40 Nm³/h
- Purity
 - Ar 0.02 ~ 0.03ppm (measured)
 - Kr ~10⁻¹⁵ (not measured yet)
 - ²²²Rn ~ 5 μBq/m³ (measured at purif. Area)

Distillation System

Online Purification Process(1)

- Liquid scintillator(LS) is fed into small buffer tank (2 m³) from KamLAND.
- Different boiling point

Dodecane (C₁₂H₂₆) : 80%

Pseudocumene : 20% (1,2,4-Trimethyl Benzene) PPO : 1.5 g / 1 (2,5-Diphenyloxazole)

Workshop in Low Radioactivity Techniques @ SNOLab

Online Purification Process(2)

- Pseudocumene(PC) is distilled firstly
 - Operating pressure 2 kPa.
 - Boiling point ~ 60℃
- Rest at the bottom of PC tower \rightarrow Dodecane + PPO
 - \rightarrow send to next tower

Online Purification Process(3)

- Dodecane(NP) is distilled secondly.
 - Operating pressure ~2 kPa.
 - Boiling point ~ 100° C

• Rest at the bottom of NP tower \rightarrow Dodecane + PPO(little concentrated)

→ send to PPO concentrator (~140°C under 2 kPa), NP is evaporated back to NP tower.

Online Purification Process(4)

- PPO is distilled finally.
 - Operating pressure ~0.3(2nd Phase) ~ 0.6(1st Phase) kPa.
 - Boiling point ~ 160 ~ 190°C

• Rest at the bottom of PPO tower \rightarrow Exhaust

Workshop in Low Radioactivity Techniques @ SNOLab

Online Purification Process(5)

- LS is mixed (blended) with distilled PC,NP, and PPO.
- Temperature sensor and Density meter
 - PC and NP mixture is adjusted by pre-small tank.
 - PPO is mixed with PC ~ 10 wt%, then fed into mixture tank.

Workshop in Low Radioactivity Techniques @ SNOLab

Online Purification Process(6)

- Purging by pure N_2 gas
 - Operating pressure ~ 40 kPa
 - N₂ flow rate ~ 30 Nm³/h
 - Series of "Gas Liq. Mixer", and "Gas-Liq. Separator"

Workshop in Low Radioactivity Techniques @ SNOLab

Quality Control During Purification

- Purpose is to insure high levels of purification and prevent recontaminating after purification procedure
- ³⁹ Ar and ⁸⁵Kr measurement system gives us sensitivity to low concentrations (10 μBq/m³) by using a cold trap and RGA.
 - Assumes secular equilibrium with natural isotopic abundances.

²²²Rn measurements. Two devices

- α counting by electrostatic collection method after trapping Rn
- ~1 m³ scintillation detector to measure ²¹⁴Bi-Po coincidences (miniLAND)
- Sensitivities ~ 10 μ Bq/m³

Optical Properties

- Light Attenuation Length
- Light Yield
- Density : Accuracy ~ 10⁻⁵

PPO concentration

Gas Chromatography

Progress of Purification(1)

- 1st Purification Phase :
 - May/12/2007 ~ Aug/01/2007
 - Purified ~ 1500 m³ from the top
 - Purification was stopped, because mining company was blasting for a new cavity.

Problems in 1st Phase:

- Mixing was seen in Bi-Po signal.
- 10 % loss in light yield seen after one volume transfer
- The activities are still high for ⁷Be and pep/CNO v.
- Worse reduction for ⁸⁵Kr

 \rightarrow considered due to the leak in the chimney.

2nd Purification Phase :

- Jun/16/2008 to Feb/06/2009
- Three full volume transfers were performed.
- Changed to bottom filling after completing first volume transfer.

Online Purification

Workshop in Low Radioactivity Techniques @ SNOLab

August 28-29th,

 $x^{2} + y^{2} [m^{2}]$

Results of 1st Purification

Lower Part (R < 5.0m, Z < 3.0m)

Workshop in Low Radioactivity Techniques @ SNOLab

Accomplishments

• Online purification was accomplished by the 2nd purification.

- Offline data analysis is being progressed.
- BG reduction ; $10^{-4} \sim 10^{-5}$ in the ⁷Be-v range
- (α , n) background was reduced.
 - \rightarrow negligible background for geo-v measurement.
- B solar-v measurement
 - Threshold energy pushing down to 3 MeV.

Summary

New purification system was constructed.

- Distillation & N₂ purge.
- Pure N₂ gas generator
- Online purification was performed.

• 1st and 2nd phase of purification has been accomplished.

- Offline data analysis is being progressed.
- Reduced BG ; $10^{-4} \sim 10^{-5}$ in the ⁷Be-v range
- (α,n) background was reduced.
 - \rightarrow negligible background for geo-v measurement.
- ⁸B solar-v measurement
 - \rightarrow Threshold energy pushing down to 3 MeV.
- Data taking will be continued till ~Feb./2011
 - Move to the next phase ; $0\nu\beta\beta$ of ^{136}Xe