

Low background techniques in SuperNEMO for the radon

Frédéric PERROT CENBG Bordeaux

For the NEMO-3/SuperNEMO Collaboration

LRT2010, 28-29th of August at SNOLAB, Canada

Outline

- Status of the radon background in NEMO3
- New radiopurity requirements for SuperNEMO
- Status of radon R&D for SuperNEMO

Radon in NEMO-3

- 2003: start of the NEMO3 detector at LSM (A_{radon}~38 mBq/m³)
- 2004: installation of an anti-radon facility ($A_{radon} \sim 6.5 \text{ mBq/m}^3$)

gain of a factor 6

NEMO Collaboration, NIM A 606 (2009), p449-465

$\beta\beta0v$ results for ¹⁰⁰Mo and ⁸²Se

*Using NME from Kortelainen, Suhonen (2007), Simkovic (2008), Rodin (2007), Caurier (2008)

Three background components:

- \rightarrow events from $\beta\beta2\nu$
- \rightarrow events from the radon in the gas
- \rightarrow events from ^{214}Bi and ^{208}TI in the $\beta\beta$ foil

From NEMO-3 to SuperNEMO

*Using NME from Kortelainen, Suhonen (2007), Simkovic (2008), Rodin (2007), Caurier (2008)

- Radiopurity of the ββ foil in ²¹⁴Bi/²⁰⁸TI : development of the BiPo detector (see Mathieu Bongrand's talk)
- Radiopurity of the gas in ²²²Rn/²²⁰Rn : R&D in progress (this talk)

SuperNEMO Design

Collaboration: France, England, Russia, Czech Republic, USA, Japan, Slovakia, Spain

20 modules, each containing:

Planar Geometry

Source

• 40 mg/cm², 4 x 2.7 m² \rightarrow ~5 kg per module • ⁸²Se first choice: high Q_{ββ}, long T_{1/2}(2v), proven enrichment technology • ¹⁵⁰Nd and ⁴⁸Ca under consideration

Tracking:

Drift chamber ~2000 cells in Geiger mode

Calorimeter:

550 PMTs + scintillator blocks

Modules surrounded by water passive shielding

²m (assembled, ~0.45m between source and calorimeter)

2013: running of the SuperNEMO demonstrator with 7kg of ⁸²Se Sensitivity in 2 years: T_{1/2}>6.5[.]10²⁴ yr (90% C.L.)

Radon R&D for SuperNEMO

Goal : $A(^{222}Rn) < 0.1 \text{ mBq/m}^3$ in the tracking chamber

Main sources of the radon background:

- Emanation from the materials inside the detector
- Diffusion of the radon coming from outside the detector
- Radiopurity of the gas tracking chamber

Possible solutions :

- Emanation measurements of some crucial materials that will be installed inside the detector (glass from PMT, wires...)
- Isolation of the tracking chamber from the calorimeter part using thin foils with low radon diffusion coefficient
- Increase of the gas flow by a factor up to 10 to lower the radon level in the tracking chamber → recycling of the gas
- Purification of the gas before entering the tracking chamber
- Development of radon detectors sensitive to ~0.1 mBq/m³

Radon emanation measurements

- Radon transfer efficiency to the detector: ~99.5%
- Minimum measurable exhalation rate E of radon: ~5.10⁻⁹ Bq.s⁻¹
- Future plan: reduction by a factor ~5 of the radon exhalation rate of the emanation chamber

First result: emanation measurement of a R6594 Hamamatsu PMT (like those used in NEMO3) $E_{exp}=(5.7 \pm 2.1)\cdot 10^{-7} \text{ Bq.s}^{-1} \rightarrow 0.3 \text{ atom.s}^{-1}$

 \rightarrow ready to measure and select future components of the SuperNEMO demonstrator

Isolation of the tracking chamber

- Goal: to remove the possible diffusion of the radon from the calorimeter to the tracking chamber
 - Requirements for the airtight foil:
 - very good radiopurity in ²¹⁴Bi and ²⁰⁸TI
 - low diffusion coefficient for radon
 - very thin foil to minimize the electron energy loss and to keep a good energy resolution
- R&D: development of a sensitive set-up to measure the diffusion coefficient for various kind of foils

First test on energy resolution with a foil of EVOH (ethylene vinyl alcohol used for food)

8"PMT + Plastic scintillator +	No EVOH	EVOH (15 µm)	EVOH (20 μm)	EVOH (25 μm)
Energy resolution FWHM at 1 MeV (%)	8.5 ± 0.1	8.7 ± 0.1	8.8 ± 0.1	8.7 ± 0.1

 \rightarrow small effect on energy resolution (no difference between 15 and 25µm)

Setup for the radon diffusion measurements

Preliminary results : foils of mylar, EVOH or TROPAC

TROPAC coupling foil (15 mm PET, 12 mm Al, 75 mm HDPE+LDPE)

Material		Thickness d (μm)	Diff. coefficient D $(10^{-12} \text{ m}^{2} \text{ s}^{-1})$	Diff. Iength L (μm)
	Glue RTV	1 000	795	19 473
	EVOH	15	0.68	571
	mylar	20	0.030	120
	ROPAC	102	< 0.0051	< 50
		Fall State		

Presence of holes: to be re-measured

Optimisation of the gas flow in SuperNEMO

Hypothesis:

- source of radon emanation inside the tracking chamber with a rate $\omega_{\rm emanation}$ in Bq/m³/s
- no radon in the gas
- \rightarrow the volumic activity A_{in}^{eq} in Bq/m³ at equilibrium in the tracking chamber is:

$$A_{in}^{eq} \approx \frac{\omega_{\text{emanation}}}{1/\tau_{\text{radon}} + \phi_{gas}/V}$$

 au_{radon} : lifetime of radon ϕ_{gas} : gas flow V: tracker volume

 \rightarrow Increase of the gas flow will decrease the radon activity in the tracking chamber. Effective lifetime τ_{eff} of the radon is defined by:

$$\frac{1}{\tau_{\rm eff}} = \frac{1}{\tau_{\rm radon}} + \frac{\phi_{\rm gas}}{V}$$

Expected gas flow for SuperNEMO: 1-5 m³/h

	Tracker volume (m ³)	Gas flow (m³/h)	Effective lifetime τ_{eff} (d)	
NEMO-3	28	0.45	1.76	Coin of a factor 6
SuperNEMO	~15	2	0.3	

Problem: a large gas flow requires gas recycling because of the cost of raw helium

Possible gas handling system design for SuperNEMO

Composition of the gas: He (94.85%), Ar (1%), ethanol (4%), water (0.15%)

Improvement of the sensitivity of radon detectors

Goal: gas radiopurity measurement, emanation measurements of the internal materials...

Detectors used for monitoring the air surrounding NEMO3 :

- Electrostatic collection of the radon daughters on a Si PIN diode
- Volume: 70L
- Background: 1-2 counts/day
- Detection limit or sensitivity: ~1-2 mBq/m³

 \rightarrow need to improve the sensitivity by a factor 10 to be able to measure the radiopurity of the gas

Ideas to improve the sensitivity of this type of detectors:

- increase of the volume (70L to 200L at least)
- increase of the HV to improve the collection efficiency
- optimisation of the geometry of the detector
 - hemispherical rather than cylindrical shape
 - optimal size of the detector for Po ions collection
- improvement of ceramic and stainless steel radiopurity

Better collection efficiency for hemispherical detector

\rightarrow R&D in progress

Development of a new concentration line

Radon concentration line

- ²²²Rn and gas mix is pumped through an ultra-pure activated carbon trap ²²²Rn is adsorbed
- Once sample collection is complete, trap is evacuated at -196 °C and then at -100 °C to remove any trapped N₂
- Trap can then be heated and helium purged to transfer the more concentrated ²²²Rn into a detector
- \rightarrow design/construction in progress

Sensitivity expected

- V=4 m³ of concentrated gas
- Radon detector: background~20 counts/d (pessimistic) and efficiency~10% (idem)
- Sensitivity for 1 day measurement: A_{Rn}<0.23 mBq/m³ at 90% C.L.
- \rightarrow very promising with better detector characteristics

Measurements to be performed

- Radiopurity of different components of the gas: He, Ar, He+Ar mix, He+Ar+Alcohol...
- Emanation measurements of the tracker sub-modules and of other components for SuperNEMO

Development of a new sensitive radon detector

Principle: to trap the radon/thoron in liquid scintillator and to measure the $e-\alpha$ BiPo coincidence

First tests with a thoron source

2nd step : measuring the BiPo events

Conclusions

- Knowledge from NEMO-3 : radon is one of the background components that limits the sensitivity of the detector
- A reduction factor of 50 (~0.1 mBq/m³) of the gas radiopurity in the tracking chamber has to be reached for SuperNEMO
- Radon R&D is shared in different directions
 - Radon emanations measurements with existing setup
 - Radon diffusion measurements of thin airtight foils to isolate the tracking chamber
 - Development of a new radon concentration line in connexion with new radon detectors designed to be sensitive to 0.1 mBq/m³
 - Design/development of a gas handling system for SuperNEMO
- → Radon R&D in progress in order to reach the radon level for the SuperNEMO demonstrator in 2013