Low radioactivity CaF₂ scintillator crystals for CANDLES

OGAWA, Izumi(사기 泉) for the CANDLES collaboration

Candles

Aug. 28, 2010

Double beta decay of ⁴⁸Ca

- next largest; ¹⁵⁰Nd (3.3 MeV)
- large phase space factor
- almost background free (γ: 2.6 MeV, β: 3.3 MeV)
- ♦ Low Natural abundance \rightarrow 0.187%
 - Iarge detector
 - enrichment

Next generation detector : fight against BG!

 $\langle m_{\nu}
angle \propto T^{-1/2} \propto M_{\rm det}^{-1/2}$ if background free $\langle m_{\nu}
angle \propto T^{-1/2} \propto M_{\rm det}^{-1/4}$ if background limited

CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>Low Energy</u> <u>Spectrometer</u>

undoped CaF₂ (CaF₂(pure)) • ${}^{48}Ca$ ($Q_{\beta\beta}=4.27 \text{ MeV}$) Atten. length > 1 m Low radioactive impurities Low background detector • 4π active shield (LS) Passive shield (Water, LS) Pulse shape information Good energy resolution large photo-coverage Two phase LS system

CANDLES III (U.G.) @Kamioka

Candles

CANDLES III(U.G.)

CANDLES III (U.G.)

4

Undoped CaF₂ scintillation crystal

Aug. 28, 2010

Energy resolution

Keep high transparency for both(CaF₂(UV), LS(vis.)) scintillation light

- CaF₂ crystal, LS, pure water, acrylic vessel,...
- Undoped CaF₂ (attenuation length > 1m)
 - ◆ cf. CaF₂(Eu) ~10 cm
- Shift wavelength of scintillation light from CaF_2 scintillators; UV \Rightarrow visible
- Large photo-coverage
 Large (13,17 inch) PMT

PMT

Conversion Phase

- large conversion eff.
- good transparency for UV
- Veto Phase
 - large light output with aromatic solvent CaF₂ Emission (~285nm) (absorb UV light) good transparency for
 - Conversion by WLS (350~400nm) visible light propagate

Performance of two phase system candles

Main BG in CaF₂ scintillator

Rejection of Double Pulse(DP) Candles

Typical Pulse Shapes

Pulse Shape Discrimination

Pulse Shape discrimination

Shape Indicator (PRC 67(2003) 014310)

Development of High Purity CaF₂ Crystals Candles CaF₂(Eu) in ELEGANT VI **U-chain(**²¹⁴**Bi)** :1100 µBq/kg Th-chain(²²⁰Rn) : 98 μ Bq/kg U and Th (ICP-MS) Raw Materials CaCO₃, HF CaF₂ Powder Fused CaF₂ CaF₂ Crystal Radioactivities in CaF₂(pure) Crystal Radioactivities in CaF₂ Powder (α -ray measurement) (HPGe measurement) (1) Powder selection(2) Crystal growing 101 crystals U-chain(²¹⁴Bi) \sim 36 μ Bq/kg ...1/30 of Previous Crystals (14±5 μ Bq/kg ;Best) Th-chain(²²⁰Rn) ~28 μ Bq/kg ...1/3 of Previous Crystals (6±1 μ Bq/kg ;Best) Aug. 28, 2010 LRT2010 11

(1) Powder selection

Measurements before (powder) and after crystallization

Powder type

•3 types of CaF₂ powder •Powder A 24 crystals •Powder B 34 crystals •Powder C 66 crystals

→ There is no big difference

Aug. 28, 2010

Position dependence

Aug. 28, 2010

Position dependence

R&D (1)

Candles

Purity measurement using melted CaF₂

Melted CaF₂ samples

Sample #1

367.5g, •7 × ^t3 cm³

from pure CaF₂ powder

341.7g High radioimpurity CaF₂ powder

Aug. 28, 2010

Weak scintillation light observed
 poorer energy resolution, but enough for radioactivity measurement

Aug. 28, 2010

comparison with ICP-MS

Delayed coinc.

Stella Chemifa Corp.

Sample #2 ²¹⁴ Po(U): ²¹² Po(Th):	75.0±0.5 ppb <2.2 ppb		U: Th:	80 ppb <20 ppb
Sample #3 ²¹⁴ Po(U): ²¹² Po(Th):	100.1±0.7 ppb <3.3 ppb		U: Th:	100 ppb <20 ppb
sensitivity ²¹⁴ Po(U) ²¹² Po(Th)	~0.001ppb ~0.002ppb		sensi U Th	tivity 0.2ppb 0.3ppb
Aug. 28, 2010		.RT2010		

R&D (2)

Rinse the powder with HNO₃ (3 wt%) Oken co., Itd.

- same powder (type, lot)
- contamination measurement was done after crystallization

without rinsing $^{214}Po(U-chain)$: $1.12 \pm 0.03(stat.)^{+0.10}_{-0.12}$ (syst.) mBq/kg $^{212}Po(Th-chain)$: 1.67 ± 0.04 mBq/kg $^{215}Po(Ac-chain)$: $1.69 \pm 0.03(stat.)^{+0.30}_{-0.35}$ (syst.) mBq/kg

with rinsingV $^{214}Po(U-chain)$: $0.07 \pm 0.02(stat.)^{+0.01}_{-0.02}$ (syst.) mBq/kg $^{212}Po(Th-chain)$: 0.95 ± 0.03 mBq/kg $^{215}Po(Ac-chain)$: $0.70 \pm 0.03(stat.)^{+0.13}_{-0.14}$ (syst.) mBq/kg

Summary

CANDLES project

- Study of ⁴⁸Ca double beta decay
- CaF₂(pure) scintillation crystal
 - Material (CaF₂ powder) selection is quite important
 - No significant difference in radioactivity measurement with two types of ingot size
 - No position dependence in radioactivity measurement for each ingot
 - Melted CaF₂ can be used to measure the radioactivity in the CaF₂ powder
- CANDLES III(U.G.) @Kamioka
 - Under construction
 - Expected BG: 0.18 ev/year

Aug. 28, 2010

CANDLES Collaboration

۲	Osaka U. (大阪大学)
	T. Kishimoto, I. Ogawa, S. Umehara, K. Matsuoka, Y. Hirano, Y. Tsubota, G. Ito, K. Yasuda, H. Kakubata, M. Miyashita, M. Nomachi, Y. Kohno, M. Saka, S. Ajimura
	Fukui U. (福井大学)
	Y. Tamagawa, T. Hayashi, Y. Maekawa, S. Isogai, T. Sato, T. Jinno
۲	Hiroshima U. (広島大学)
	R. Hazama
۲	Kyoto Sangyo U.(京都產業大学)
	K. Okada
۲	Saga U. (佐賀大学)
	H. Ohsumi
۲	Tohoku U. (東北大学)
	S. Yoshida
۲	Tokyo Institute of Technology (東京工業大学)
	Y. Fujii
۲	U. Tokushima (徳島大学)
	K. Fushimi
٨	LPT2010