

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Low background physics at the Kimballton Mine

Sean MacMullin

LRT August 28, 2010

Friday, August 27, 2010

Kimballton Underground Research Facility (KURF)

- Low background counting facility (UNC/TUNL)
- Majorana Low-background BEGe at KURF (MALBEK) (UNC/TUNL)
- Double beta decay to excited states (Duke/TUNL)
- Neutron characterization (UMD/NIST)
- miniLENS (Va Tech)

KURF Basics

- Ripplemeade, Va. 30 minutes from Virginia Tech
 - Chemical Lime Co. limestone mine (700 kTon/y)
- Experimental area is on 14th level, 520 m (1450 m.w.e.)
 - Drive-in access
 - Power, water, ethernet, air filtering, mining support
- Laboratory maintained by Virginia Tech
 Sean MacMullin

Sean MacMullin

Friday, August 27, 2010

Gamma Assay

Sean MacMullin

Two commercial HPGe detectors to screen for ²³⁸U, ²³²Th, ⁴⁰K

MELISSA

50% RE Canberra LB I.7 keV (FWHM) at I333 keV ~20 keV threshold 6" Doe Run lead shield I" OFHC copper inner shield

VT-I

35% RE Ortec GEM low-background I.8 keV (FWHM) at I333 keV ~20 keV threshold 4" commercial lead shield 0.116" OFHC copper lining

	Melissa [cpd]	VT-1 [cpd]	VT-1 (surface) [cpd]
$40-2700 { m keV}$	7.8 k	7.6 k	84 k
$40-1000 {\rm ~keV}$	$7.5 \mathrm{k}$	$6.5 \mathrm{k}$	68 k
1000-2700 keV	270	710	16 k

Sean MacMullin

Background Reduction

OFHC copper shield Reduces Compton continuum from ²¹⁰Pb β-decay Brehmsstrahlung Graded shield: PE absorption in Pb 75-80 keV X-ray Cu fluorescent X-rays are 8-9 keV

Sean MacMullin

Radon mitigation

Radon varies seasonally:

3 pCi/l (summer), 0.5 pCi/l (winter) Dry nitrogen purge from dedicated boiloff dewar

Efficiency Calculations

Efficiency depends on Detector (crystal size, dead layer, etc...) Detector and shield geometry Source geometry

Use MAGE/GEANT4 to simulate each sample

Monte Carlo Validation using point sources with known activity

< 10% systematic error in efficiency
 Sean MacMullin

Detector Sensitivity

Sample: I kg Teflon in a Marinelli beaker

		Melissa		VT-I	
Energy[keV]	Isotope (Chain)	cts/day	Det. Lim. [mBq/kg]	cts/day	Det. Lim. [mBq/kg]
63	²³⁴ Th(²³⁸ U)	81 ± 1	80	79 ± 4	190
609	²¹⁴ Bi(²³⁸ U)	59 ± 2	10	53 ± 3	15
238	²¹² Pb(²³² Th)	133 ± 3	6	104 ± 5	10
911	²²⁸ Ac(²³² Th)	5.7 ± 0.7	5	13 ± 2	20
1416	⁴⁰ K	9 ±	30	32 ± 3	90

Sean MacMullin

Assay Results

Sample	Detector	U(e) [Bq/kg]	U(l) [Bq/kg]	Th(e) [Bq/kg]	Th(l) [Bq/kg]	K $[Bq/kg]$	60 Co [Bq/kg]
Table Mountain	Melissa		$100{\pm}40$	$100{\pm}40$	$270{\pm}120$	790 ± 320	
rock							
Table Mountain	VT-1		100 ± 40	$100{\pm}40$	$300{\pm}120$	730 ± 290	
rock							
Superinsulation	Melissa		$3.0{\pm}1.2$		$0.09 {\pm} 0.03$	0.9 ± 0.4	
panels							
Aluminum stock	Melissa	$7.1{\pm}2.3$	1.5 ± 0.4	<0.1	$1.5 {\pm} 0.4$	< 0.3	
flange coupling							
PMT base elec-	Melissa	<7	1.5 ± 1.0	$0.8 {\pm} 0.6$	$0.6 {\pm} 0.4$	3.3 ± 1.9	
tronic components							
PMT base elec-	VT-1	<4	$1.1 {\pm} 0.7$	0.8 ± 0.4	$0.6 {\pm} 0.3$	$3.6{\pm}1.8$	
tronic components							
Zeolite molecular	Melissa	$5.8{\pm}1.2$	$8.2{\pm}0.8$	$9.6 {\pm} 0.6$	$10.5 {\pm} 0.6$	4.4 ± 0.5	
seive							
Great Stuff TM foam	Melissa		< 0.4		< 0.3	< 0.5	
insulation							
Axon Picocoax®	VT-1	<1.2	< 0.35	$0.060 {\pm} 0.020$	$0.055{\pm}0.010$	$700{\pm}200$	< 0.018
Sullivan lead bricks	Melissa	< 0.023	< 0.003	< 0.001	< 0.0007	< 0.005	
University of Wash-	Melissa	< 0.026	< 0.005	< 0.002	< 0.0007	< 0.005	
ington lead bricks							
PEEK plastic	VT-1	< 0.40	< 0.070	< 0.065	< 0.050	< 0.260	< 0.015

Sean MacMullin

Clean sample prep at TUNL and UNC (class 100) Ultra-pure acids and solvents Procedures adopted from PNNL and UW

Friday, August 27, 2010

MAJORANA LOW-Background BEGe at KURF

Broad Energy Germanium (BEGe) detectors Variation on PPC detector already commercially available.

MALBEK is a BEGe prototype from Canberra Industries (Meriden, CT)

Part of the R&D process for MAJORANA Under low-background conditions (cryostat and lab): Characterize charge pulses R&D for low-energy triggering Characterize spectrum, particularly at low energy Evaluate preamplifier technologies

Sean MacMullin

Broad Energy Germanium (BEGe) Detectors

JCAP 09 (2007) 009

Large, short current pulses One for each energy deposition Ideal for PSA

Sean MacMullin

Intrinsically low capacitance, low noise, low threshold Sensitive to light (<10 GeV) WIMP dark matter

Physical Characteristics

Canberra Specifications Mass - 450 g Active Diameter - 60 mm Length/Thickness - 30 mm Material - LB copper cryostat & window, 0.5 mm

MALBEK: Small point contact: 3-4 mm Large ditch radius: 15 mm

Low-Background Shield

Shielding: Inside-Out

- I" ancient lead
- •8" low-background lead
- Radon exclusion box
- •2" muon veto
- •2" borated polyethylene
- 10" polyethylene

Sean MacMullin

Live Time 20 days

Threshold ~I keV

TUNL ITEP ββ Setup

Plastic Scintillators

Cryostat

Sean MacMullin

NIST/UMD Fast Neutron Spectrometer

- The fast neutron flux is a possibly irreducible background for Dark Matter and Neutrino-less double-beta decay experiments
- A direct measurement is required to test and benchmark Monte Carlo simulations of the flux
- The NIST/UMD collaboration aims to measure the neutron flux at KURF using a coincidence between segmented plastic scintillators and 3He proportional tubes

Conclusions

- Physics has been happening at KURF since 2007
- Sensitivity required to assay samples for low background physics experiments has been demonstrated with commercial HPGe detectors
 - Further descriptions at arXiv:1007.0015 (submitted to NIM A) lacksquare
- MALBEK is currently taking data
 - Characterization will provide input to the MAJORANA collaboration and low background community
- Future efforts will measure the neutron, muon and gamma flux

http://www.phys.vt.edu/~kimballton http://www.physics.unc.edu/research/nuclear/particle_astro/kimballton/php <u>http://www.tunl.duke.edu/~tornow/below.html</u>

Sean MacMullin

20

miniLENS

low-E neutrinos Eth = 14 keVmeasure pp-V flux sun's primary energy generation

Sean MacMullin

Friday, August 27, 2010

 $v_e + {}^{115}In \rightarrow e^- + \gamma + (\gamma / e^-)$ $-^{115}$ Sn solar signal delayed tag (τ =4.76 μ s)

Sean MacMullin

Friday, August 27, 2010

Information from R. Cooper (ORNL)

Effect of Ditch Diameter

1400 20 10 Radial position of the isolation groove is extremely 0 important in determining the field distribution close -10 to the point contact surface -20 20 40 \mathbf{O} 1400 Too narrow: pinch-off, difficulty depleting the full 20 volume 10 0 Too wide: loss of characteristic signal shape, poor -10 charge collection -20 20 0 40 Information from R. Cooper (ORNL) LRT August 28, 2010

Smaller point contact produces shorter range weighting potential

Better PSA

Smaller point contact increases pinch-off Creates stronger field at contact Withstands less over-bias

Size of point contact defines ability of over-bias to overcome pinch-off Defines the depth into crystal that added potential extends Large diameter means more "penetrating" potential

Information from R. Cooper (ORNL) LRT August 28, 2010

Sean MacMullin

Data Processing

ORCA DAQ application - developed and maintained at UNC

Pulse reset preamplifier

Struck SIS3302 16 bit, 100 MHz, 8 channel digitizer

20 day MALBEK spectrum K-shell EC ⁶⁵Zn(8.99 keV) and ^{68,71}Ge(10.36 keV) Threshold ~740 eV

Inset: Wavelet de-noised waveform (black) and raw waveform (red) of a 8.31 keV event