

THE UNIVERSITY OF ALABAMA

NAA techniques and applications

Ryan MacLellan LRT 2010 August 28, 2010

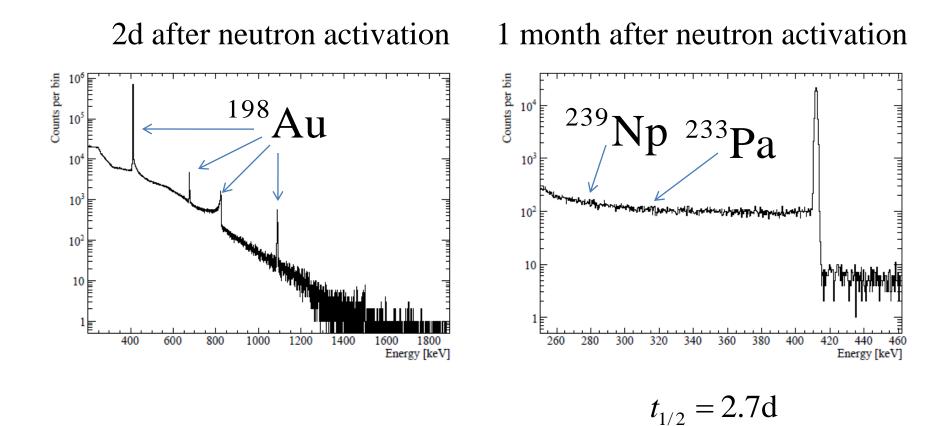
Techniques typically used to characterize natural radioactivity

Direct γ -ray counting

- Sensitive to the background creating isotopes of the decay series directly.
- Requires long counting time and large sample mass to achieve good sensitivity.
- 10⁻¹⁴g/g U produces only 1 decay per day per 100kg of sample mass.

Mass spectroscopy

- Sensitivity limits of:
 - 10⁻⁹g/g K
 - $10^{-12/-13}$ g/g U and Th
- Requires sample to be digested by acids (ICPMS) or conductors (GDMS).



Neutron Activation Analysis

- Sensitivity limits of:
 - 10⁻⁹g/g K
 - $10^{-12/-13}$ g/g U and Th
- High sensitivity measurement can take up to one month due to long half life of Th activation product: ²³³Pa.
- Only applicable to matrix materials with low neutron capture cross sections (most metals not suitable).

Gold plated silicon wafer (etched for ICP-MS)

Neutron Activation Analysis

- Sensitivity can be increased by removing uninteresting side activities before counting.
- For liquid scintillator samples, post-radiation chemistry increased sensitivity to 10⁻¹⁵g/g U/Th at UA.
- A group at TU Munich achieved 10⁻¹⁶g/g U/Th utilizing chemistry and an onsite reactor.
- Only feasible for screening limited number of materials as each requires custom tailored chemical processes.

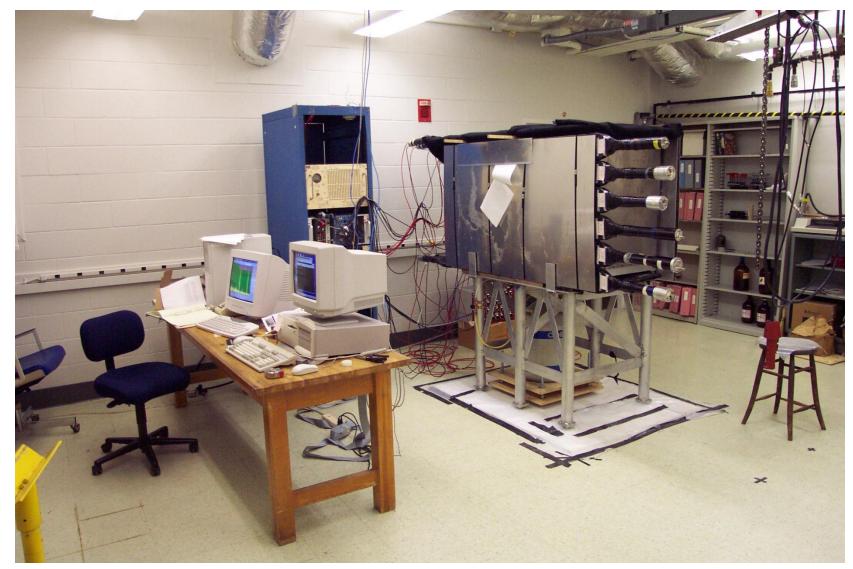
Neutron Activation Analysis

- Any neutron activation analysis requires a sample handling facility to handle considerable amounts of open radioactivity.
- Consistent pre-analysis treatment is critical to avoid surface contamination
 - At UA this is done in a class 500 clean room
 - High purity solvents, acids, and water for cleaning
- Activation costs for UA 1000--2000USD.
- Sample counting on, ideally multiple, large Ge detectors to combat decaying signal. Low background detectors are not required (except RNAA).

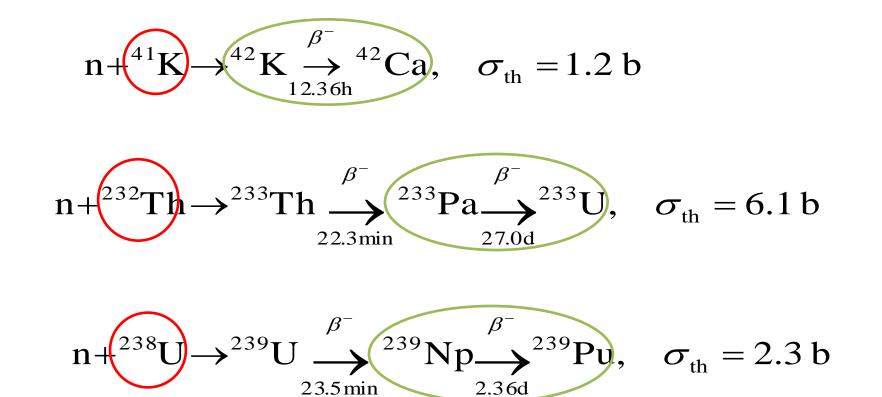
Procedure at UA

- Sample preparation in class 500 clean room.
- All lab supplies etched with ultra pure acid and rinsed with purified water.
- Depending on the required irradiation duration, sample activated in a small PE bottle or miniature quartz vial.

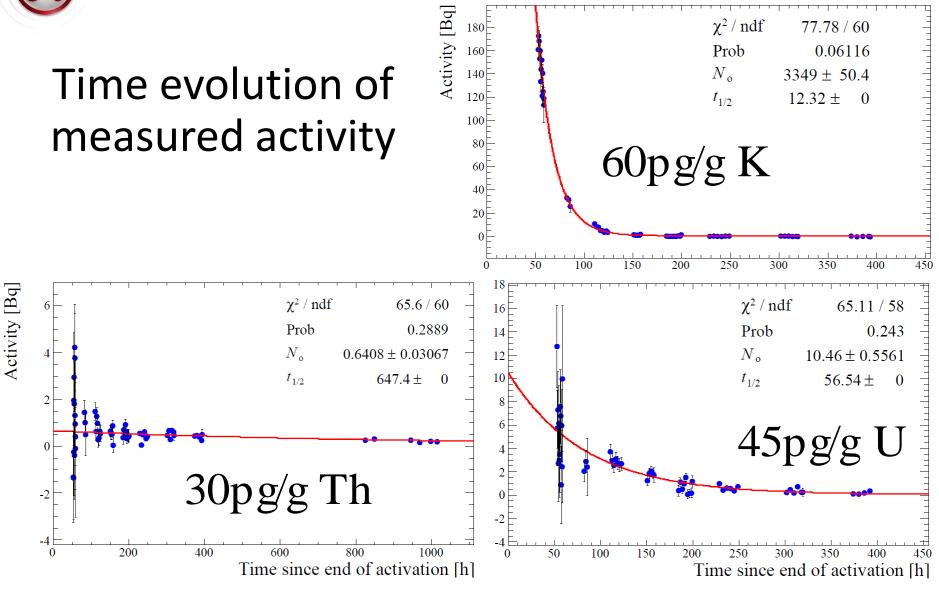
A few examples of reactors


Thermal neutron flux of some reactors with pneumatic sample insertion:

Reactor	Location	Thermal n Flux (cm ⁻² s ⁻¹)
MITR	MIT	5x10 ¹³
HFIR	Oak Ridge	4x10 ¹⁴
MURR	University of Missouri	6x10 ¹⁴
RFM II	TU Munich	8x10 ¹⁴







NA Analysis

Number of activated nuclei

$$A = \phi_n \sigma_{tot} N(1 - e^{-\lambda t_{irr}}) \times e^{-\lambda t}$$
 time t
concentration of parent nuclei: $X[ng/g] = 10^9 \frac{N}{N_A} \frac{M}{x} / m_{sample}$

Number of activated nuclei

$$A = \phi_n \sigma_{tot} N(1 - e^{-\lambda t_{irr}}) \times e^{-\lambda t}$$
 time t
Concentration of parent nuclei: $X[ng/g] = 10^9 \frac{N}{N_A} \frac{M}{x} / m_{sample}$

For a two stage decay things get more complicated but still straight forwardly:

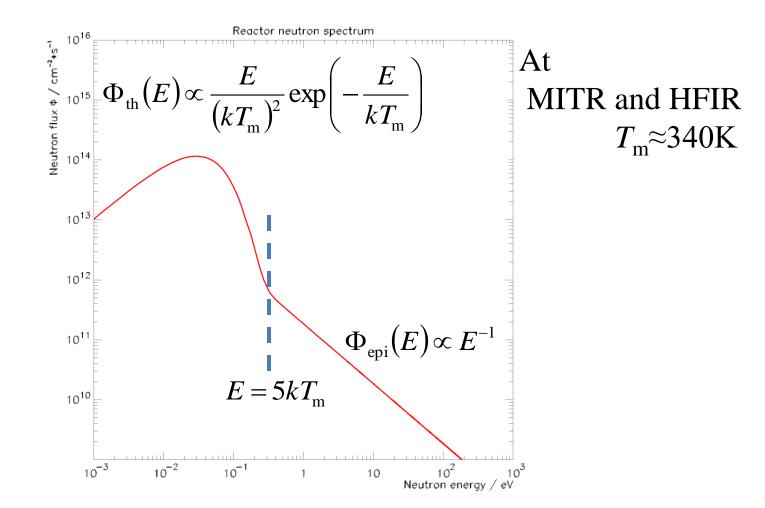
$$A = \phi_{\rm n} \sigma_{\rm tot} N \left(\frac{\lambda'}{\lambda' - \lambda} \frac{1 - e^{-\lambda t_{\rm irr}}}{\lambda} e^{-\lambda t} - \frac{\lambda}{\lambda' - \lambda} \frac{1 - e^{-\lambda' t_{\rm irr}}}{\lambda'} e^{-\lambda' t} \right) \lambda$$

Number of activated nuclei

$$A = \phi_{n} \sigma_{tot} N(1 - e^{-\lambda t_{irr}}) \times e^{-\lambda t} \quad \text{time } t$$
Concentration of parent nuclei: $X[ng/g] = 10^{9} \frac{N}{N_{A}} \frac{M}{x} / m_{sample}$

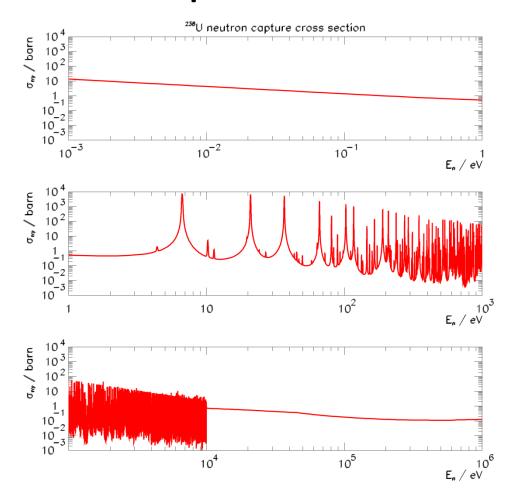
For a two stage decay things get more complicated but still straight forwardly:

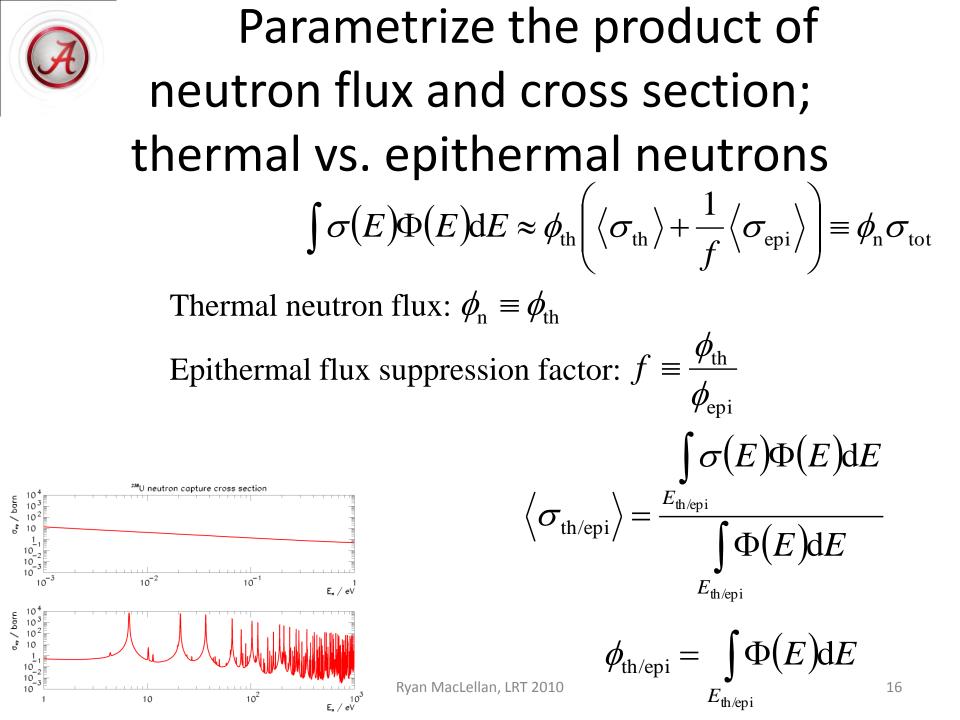
$$A = \phi_{\rm n} \sigma_{\rm tot} N \left(\frac{\lambda'}{\lambda' - \lambda} \frac{1 - e^{-\lambda t_{\rm irr}}}{\lambda} e^{-\lambda t} - \frac{\lambda}{\lambda' - \lambda} \frac{1 - e^{-\lambda' t_{\rm irr}}}{\lambda'} e^{-\lambda' t} \right) \lambda$$


Number of activated nuclei

$$A = \phi_{n} \sigma_{tot} N(1 - e^{-\lambda t_{irr}}) \times e^{-\lambda t} \quad \text{time } t$$
Concentration of parent nuclei: $X[ng/g] = 10^{9} \frac{N}{N_{A}} \frac{M}{x} / m_{sample}$

For a two stage decay things get more complicated but still straight forwardly:


$$A = \phi_{\rm n} \sigma_{\rm tot} N \left(\frac{\lambda'}{\lambda' - \lambda} \frac{1 - e^{-\lambda t_{\rm irr}}}{\lambda} e^{-\lambda t} - \frac{\lambda}{\lambda' - \lambda} \frac{1 - e^{-\lambda' t_{\rm irr}}}{\lambda'} e^{-\lambda' t} \right) \lambda$$


Parametrize the neutron flux: thermal vs. epithermal neutrons

Parametrize the product of neutron flux and cross section; thermal vs. epithermal neutrons

National Institute of Standards & Technology

Certificate of Analysis

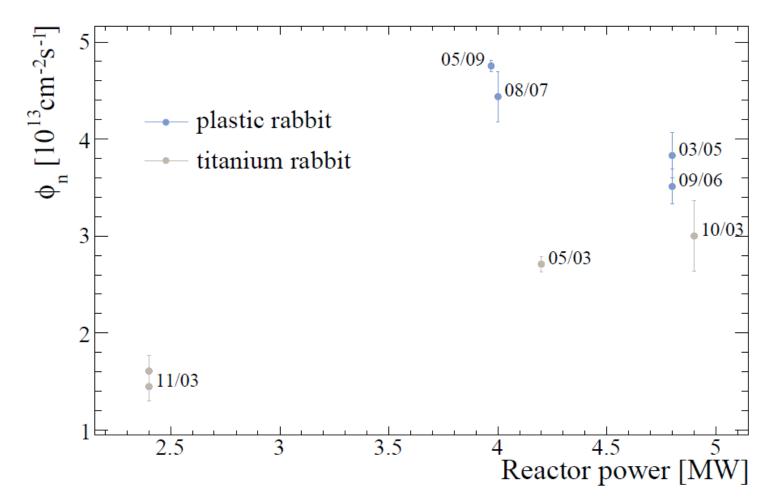
Standard Reference Material® 1633b

Constituent Elements in Coal Fly Ash

Al	15.05	±	0.27
Ca	1.51	±	0.06
Fe	7.78	±	0.23
Mg	0.482	±	0.008
Κ	1.95	±	0.03
Si	23.02	±	0.08
Na	0.201	±	0.003
S	0.2075	±	0.0011
Ti	0.791	±	0.014

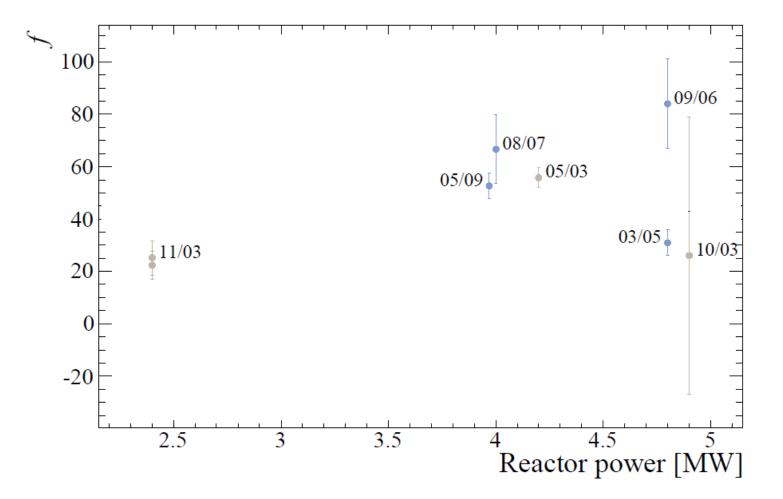
As	136.2	±	2.6
Ba	709	±	27
Cd	0.784	±	0.006
Cr	198.2	±	4.7
Cu	112.8	±	2.6
Pb	68.2	±	1.1
Mn	131.8	±	1.7
Hg	0.1431	±	0.0018
Ni	120.6	±	1.8
Se	10.26	±	0.17
Sr	1041	±	14
Th	25.7	±	1.3
U	8.79	±	0.36
V	295.7	±	3.6

Global χ^2 minimization of


$$A = \phi_{\rm n} \sigma_{\rm tot} N (1 - e^{-\lambda t_{\rm irr}}) \times e^{-\lambda t}$$

N measured vs N expected

$$N = N_{\rm A} \frac{x}{M} m_{\rm sample} m_{\rm frac}$$


yields ϕ_n and f

MITR ϕ_n as a function of reactor power

MITR f as a function of reactor power

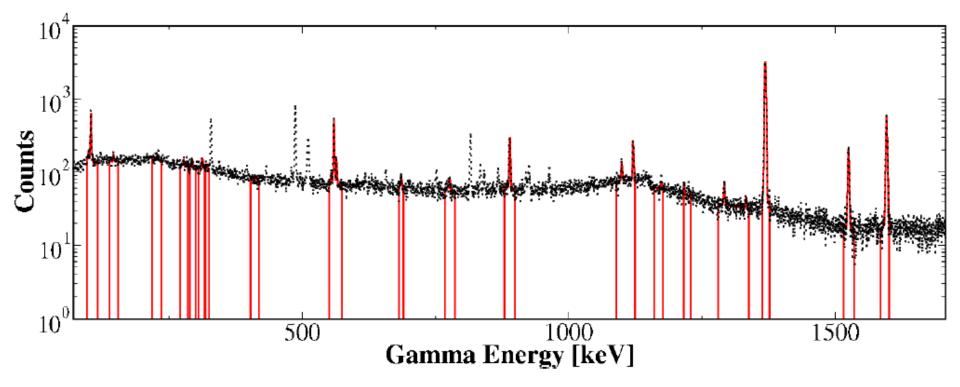
Summary

- NAA has been successfully used in the preparation of previous successful low background experiments. It offers ppt to sub ppt-sensitivity depending effort made to avoid source related background.
- Complements ICP-MS technique. Well suited for most plastics that are inaccessible to traditional MS.

One final note: document surveys

Systematic study of trace radioactive impurities in candidate construction materials for EXO-200

10 pages of table (small font) listing all materials characterization for EXO-200 construction (useful and otherwise). Most cited EXO paper to date!


D. S. Leonard *et al.*, Systematic study of trace radioactive impurities in candidate construction materials for EXO-200, Nucl. Instrum. Meth. A **591**, 490 (2008) [arXiv:0709.4524]

Glean

UA KamLAND scintillator analysis

- 1. Collection of Scintillator
 - Ship samples to US
- 2. Preconcentration
 - Remove Reactor-unfriendly organics
- 3. Irradiation at Reactor (ORNL/MITR)
- 4. Post-chemistry
 - Separate "Signal" isotopes from "Background"
- 5. γ Counting (HPGe)
 - Analysis and Results

Status	Radionuclide	Activity	Activity error	Model prediction	χ^2 contribution
on	²⁴ Na	13640	200	13537.6	0.2
on	^{42}K	6320	110	6508.4	2.8
on	59 Fe	2220	130	1810.4	9.7
on	^{51}Cr	1650	60	1601.9	0.6
off	^{76}As	10760	210	13052.4	119.0
on	203 Hg	10.5	3.6	0.4	7.9
on	²³³ Pa	654	36	639.4	0.2
on	²³⁹ Np	770	50	769.7	0.0
off	¹²⁴ Sb	36.2	2.4	44.8	12.3
off	^{46}Sc	5750	60	5715.3	0.4
off	60 Co	335.8	1.8	316.9	106.6
off	⁶⁵ Zn	129.9	3.3	93.3	123.0
off	^{82}Br	142	6	121.6	13.3
off	¹⁴⁰ La	11572	31	12324.2	598.6
off	¹⁸¹ Hf	93	10	77.5	2.4
off	¹⁸² Ta	59.6	2.9	58.5	0.2

Effective Neutron Capture Cross Sections

Andreas Piepke Department of Physics and Astronomy University of Alabama

April 18, 2001

Isotope	Tabulated [barn]			This evaluation [barn]		
	σ $\langle \sigma_{th} \rangle$		$\langle \sigma_{epi} \rangle$	$\langle \sigma_{th} angle$	$\langle \sigma_{th} angle$	$\langle \sigma_{epi} angle$
	293.6 K	$293.6~{ m K}$		293.6 K	$340~{ m K}$	
²³ Na	0.531	0.471	0.311	0.467	0.434	0.349
41 K	1.459	1.294	1.58	1.298	1.206	1.664
$^{50}\mathrm{Cr}$	15.92	14.12	7.38	14.13	13.13	8.30
58 Fe	1.300	1.153	1.357	1.020	0.948	1.561
59 Co	37.18	32.96	75.51	33.07	30.72	76.68
⁶⁴ Zn				0.677	0.629	1.564
$^{81}\mathrm{Br}$	2.690	2.385	46.63	2.385	2.217	51.03
$^{197}\mathrm{Au}$				88.02	81.99	1566.7
232 Th	7.400	6.532	84.35	6.567	6.095	86.91
$^{238}\mathrm{U}$	2.717	2.414	278.1	2.421	2.251	278.3