

Xenon purification and Radon measurements for EXO

Jacques Farine Laurentian University

LRT'10 – SNOLAB – 100829

Plan

- EXO-200
- Electrostatic Counters (ESCs)
- Radon, thoron, actinon emanation
- Xenon purification for EXO-200

EXO-200: Sensitivity

2 year sensitivities for the EXO-200 $0\nu\beta\beta$ search.

Mass (tonne)	Efficiency (%)	Run time (yr)	<i>σ(E)/E</i> @ 2.5 MeV (%)	Radioactive background (events)	<i>T</i> _{1/2} ⁰∨, 90% C.L. (yr)	Majora (n RQRPA	ana mass neV) ¹ NSM ²
0.2	70	2	1.6	40	6.4 × 10 ²⁵	109	135
				0 Managaraha			

1. Simkovic et al., *Phys. Rev.* C**79**, 055501(2009) [g_A= 1.25];

2. Menendez et al., Nucl. Phys. A818, 139(2009) [UCOM results]

EXO-200 will also search for $2\nu\beta\beta$ of ¹³⁶Xe, which has not been observed.

	<i>Τ</i> _{1/2} ² ' (yr)	Events/year (no efficiency applied)
Experimental limit		
Luescher et al, 1998	> 3.6 x 10 ²⁰	< 1.3 M
Bernabei et al, 2002	> 1.0 x 10 ²²	< 48 k
Gavriljuk et al, 2005	> 8.5 x 10 ²¹	< 56 k
Theoretical prediction [7_{1/2}max]		
QRPA (Staudt et al)	= 2.1·10 ²²	= 23 k
QRPA (Vogel et al)	= 8.4·10 ²⁰	= 0.58 M
NSM (Caurier et al)	(= 2.1 ·10 ²¹)	(= 0.23 M)

EXO

EXO is a multi-phase program to search for the neutrinoless double beta decay of ¹³⁶Xe. The ultimate goal is a ton-scale experiment with ~10 meV sensitivity to the Majorana mass as well as positive identification of the barium daughter ion.

Case	Mass (tonne)	Efficiency (%)	Run time (yr)	<i>σ(E)/E</i> @ 2.5 MeV (%)	2νββ background (events)	<i>T</i> _{1/2} ⁰∨, 90% C.L. (yr)	Majorai (m RQRPA ¹	na mass eV) NSM²
Conservative	1	70	5	1.6	0.5 (use 1)	2 × 10 ²⁷	19	24
Aggressive	10	70	10	1	0.7 (use 1)	4.1 × 10 ²⁸	4.3	5.3

1. Simkovic et al., *Phys. Rev.* **79**, 055501(2009) [g_A-1.25]; 2. Menendez et al., *Nucl. Phys.* A**9**18, 139(2009) [UCOM results]

Assumptions:

- 80% enrichment in ¹³⁶Xe
- Intrinsic low background and Ba tagging to eliminate all radioactive background
- Energy resolution only used to separate the 0_V from 2_V modes: Select 0_V events in a $\pm 2\sigma$ interval centered around the 2458 keV endpoint
- Use for $2\nu\beta\beta T_{1/2} > 1 \times 10^{22}$ yr (Bernabei et al.)

EXO-200 Start of DAQ very near future

Electrostatic Counters

Developed to Measure ²²⁴Ra, ²²⁶Ra in SNO

- A recirculation pump forces a carrier gas gas through the sample and into the ESC for analysis.
- IOL Decay Chamber, filled with Electrostatic field
- 70% of Rn daughters +charged
 - Rn daughters precipitate onto Si PIN diode
 - Alpha spectroscopy
 - Time series analysis returns ²²⁰Rn, ²²⁶Ra, ²²⁸Th and ²²⁴Ra at time zero

Designed specifically for high ²²⁰Rn detection efficiency: 22.5% @ 25mbar N₂

J.X.Wang et.al., NIM A 421 (1999) 601 T.C.Andersen et.al., NIM A 501 (2003) 399–417

Efficiencies ²²²Rn: Volume

²²⁰Rn: Volume +Transport

measure p_iV_i ; know mass flow; obtain transfer time

Volume along recircul. loop (cc)

Sensitivity to ²¹⁹Rn through ²¹¹Bi

ESC Farm at SNOLAB

- Measure radon from U / Th / Act chains, in N₂, Ar, Xe
- From 9 counters down to 6 for general emanation studies (still 8 in use for EXO)
 - ESC#5 moved to WIPP (and well used)
 - ESC#7 lent to Alberta (SNO+ Rn–free air)
 - ESC#3 dedicated to Rn trap work (upcoming slides)
- Worked hard to reduce backgrounds further / maintain:
 - sensitivity: 5 resp. <~10 atoms/day in ²²⁰Rn resp. ²²²Rn
 - sensitivity ~50 atoms/day in ²¹⁹Rn

Radon Emanation

Array of 9 Electrostatic Counters (ESCs) at SNO > SNOLAB

- Electrostatic counters operated by LU at SNO well understood in $N_{\rm 2}$
- Must use Ar with purifier, this changes:
 - lower drift voltage 1000 > 600V
 - transport efficiency / active volume
 - Po charge fraction (maybe)
- Used 0.5Bq ²²⁸Th source (after SAES runs) to recalibrate ESC:
 - $\mathbf{E}_{det} = 26\% \,^{222}$ Rn in Ar, 600V
- Subtract Blank = Purifier bypassed
- > 30 samples counted for EXO
- One ESC relocated to EXO Clean Room for in-situ measurements ON-GOING NEEDS

DuPont Teflon TE-6472 Lot# 0503830033 APT drum #04 I - DuPont Teflon TE-6472 Lot# 0506830001 Sealed drum, DuPont - Espanex sheet for flat cable (from A. Piepke) - Ceramics electrical breaks 9998-06-W(12) + 17199-01-W(2) - LXe Level Sensors (from P. Rowson) -Valve seats for GXe systems (from C. Hall) - Teflon coated o-rings (compressors) (from C. Hall) - Phosphor Bronze Spiders for APDs (from A. Pocar) MD152.B.1 - Copper plates (from A. Pocar) MD152.A.1 - Copper plates (from A. Pocar) MD152.B.1 - Macor rods (from V. Stekanov) MD197 - Epoxy for cables F/T (from L. Yang) MD196, MD99 - SAES Purifier I (Carleton) MT-PS4 - SAES Purifier II (MT-PS4 SLAC #2/2 Spare) - SAES Purifier III (PF4C3R1 - Cartrige only) - SAES Purifier IV (MT-PS4 SLAC #1/2 Original) - NuPure Eliminator CG (from Al Odian) - Mott Filter 1 of 3 (MD198) - Mott Filters 2+3 of 3 (MD198)

SAES Purifier II - SLAC Spare

EXO Radon Emanation Measurements Summary

Last update 23 July 2008 J. Farine, Laurentian University

Radon yields when given in atoms/day are always total, as measured.

All dates are in the 6-digit format YYMMDD.

		Samp	le chara	acteristics			Ema	ation rates 224Ra conc. 226Ra conc	226Ra conc		
Object	References (author date)	MD#	Mass	Area	# of	To	tal	Per un	it area	(10 ⁻¹² gTh _{eq} /g)	(10 ⁻¹² gU _{eq} /g)
		MD#	(g)	(m ²) i	items	220Rn/d	222Rn/d	220Rn/m ² d	222Rn/m ² d		
SAMPLES											
DuPont Teflon TE-6472 Lot# 0503830033 Taken from APT drum #041 by APT on 3 August 2005	BA051020 BA060104 BAJF051110	TBD	602.1	(3.8)		< 5	36 ± 7	< 1	9.5 ± 1.8	< 25 ‡	56 ± 10 ‡
DuPont Teflon TE-6472 Lot# 0506830001 Sealed drum from DuPont. Samples collected in UA clean room	BA051020 BA060104 BAJF051110	<u>MD11</u>	718.2	(4.5)		< 5	< 12	<1	< 3	< 20 ‡	< 16 ‡
Espanex sheet for flat cable (from A. Piepke)	JF060707	<u>MD1,</u> <u>MD52</u>		1.60		< 10	< 10	< 6.3	< 6.3		
Ceramics electrical breaks (from V. Strickland). Part#(qty): 9998-06-W(12) +	JF060330			7.9E-2 (29%	12+2	< 9.5	< 8.2	< 121	< 105		

Upcoming update to EXO radioactivity measurements will include all Rn results

Radon Trap

Required Rn levels in EXO-200

Monte-Carlo

- 200 kg Xe 80% enrichment in ¹³⁶Xe
- $\sigma_{\rm E}$ = 1% at $Q_{\beta\beta}$ = 2479 keV
- No fiducial or tracking cut
- No ²¹⁴Bi-Po delayed coincidence cut
- Energy acceptance $\pm 2\sigma$ around $Q_{\beta\beta}$ (2430 2530 keV)
- Chose <mv>=0.39 eV as a reference scale (central value, neglect large 95%CL uncertainties), NME by Staudt et al.

 \rightarrow T_{1/2}=1.5 10²⁵ y, $\beta\beta$ 0 ν -mode: 34 events per year

• Background from Radon <10% of the expected event rate

Rn trap design goals

- A constant II Rn in the TPC means max ingress is ~2 Rn/day
- This is for all sources
- TPC internals likely to contribute too (will be measured!)
- To be on safe side, want "zero" Rn ingress from loop
- How much is zero ?
 - here, << 2 Rn/day say 0.1 Rn/day (factor of 20)
- Problem: monitoring
 - current levels are 100 atoms (20 pushing)
- Choose design criterium:
 - trap efficiency such, that < 0.1 Rn/day ingress</p>
- Thus, need to know load to the trap (trap removes a fraction)

Radon Balance

Component	Total (Rn/d)
SAES Getter	<110
Valve seats	< 20
GXe systems	25±10
GXe compr. lines	(66±20)
Mott filters	50
Total source q	< ~ 200

At equil. $q = \lambda N$; $N \sim 1100$ atoms – Safer: 1000 Rn/day

Rn Trap Design Goal and Plan

- Reduction required is from 1000 to 0.1 Rn/day
- This is I part in $10E4 \rightarrow target effciency = 99.99\%$
- But! this must be met at 20 LPM, max dP 1 psi, 166K
- I) Preliminary tests w/ different traps
 - Mark I ~Ig brass wool, I60 mbar N₂ (WIPP) \rightarrow 60% (next 3 sl.)
 - Mark II ~2g brass wool, I atm Xe (SNOLAB) \rightarrow 90%
- 2) Found that OFHC Cu has very good ΔH_{ads} for Rn
- Dedicated xenon system w/ cooling and X-over HXs
- In parallel, developed two models for radon removal to define trap parameters while acquiring data

Rn Trap Design Goal and Plan

- Reduction required is from 1000 to 0.1 Rn/day
- This is I part in $10E4 \rightarrow target effciency = 99.99\%$
- But! this must be met at 20 LPM, max dP 1 psi, 166K
- I) Preliminary tests w/ different traps
 - Mark I ~Ig brass wool, I60 mbar N₂ (WIPP) \rightarrow 60% (next 3 sl.)
 - Mark II ~2g brass wool, I atm Xe (SNOLAB) \rightarrow 90%
- 2) Found that OFHC Cu has very good ΔH_{ads} for Rn
- Dedicated xenon system w/ cooling and X-over HXs
- In parallel, developed two models for radon removal to define trap parameters while acquiring data

Radon Trap Development

- 1a) ESC dedicated to EXO-200
- Augmented with:
 - CO₂ trap
 - Rn source
 - Water vapour trap
 - Radon trap Mark I (LN₂)
 - Heat exchanger
 - Recirculation pump
- Study Rn removal efficiency
- Local needs in Rn emanation
- Will monitor Rn in EXO-200 Radon Tent (target ~50 mBq)

Rn runs in EXO CR - Spike 1 061026E5++

Run a - cooldown - 218Po and models

Rn Trap Design Goal and Plan

- Reduction required is from 1000 to 0.1 Rn/day
- This is I part in $10E4 \rightarrow target effciency = 99.99\%$
- But! this must be met at 20 LPM, max dP 1 psi, 166K
- I) Preliminary tests w/ different traps
 - Mark I ~Ig brass wool, I60 mbar N₂ (WIPP) \rightarrow 60% (next 3 sl.)
 - Mark II ~2g brass wool, I atm Xe (SNOLAB) \rightarrow 90%
- 2) Found that OFHC Cu has very good ΔH_{ads} for Rn
- Dedicated xenon system w/ cooling and X-over HXs
- In parallel, developed two models for radon removal to define trap parameters while acquiring data

Dedicated xenon system at SNOLAB Concept

XeRn System - current trap has few gm brass wool

Radon Trap Cold Enclosure

Custom designed heat exchanger (Ken McFarlane, Oleg Li, SNOLAB)

> Commercial cooler Polycold CryoTiger 30W @ -100C

Allows for easy exchange of trap of different designs

Ib) 90% Radon removal, I atm Xe ~5 NLPM

XeRn Run 090323 - Po-218 count rate

2) Next Gen.: copper-based traps

- Heavy atom research uses radon as a test bed for extraction techniques
- Interested in short half-lifes, so need high retention rates > lots of experimental data:
- Polycristalline copper has high affinity for radon (see next slide)
- Nickel even better, but marginally, lus requires complex surface treatment (voided quickly if impurities present in xenon)

"Why not just activated charcoal ??"

- Generates particulates
- You get want you can buy how to you clean it fruther ?
- Relies on different atom size / polarizability, and xenon is the closest to radon in size
- Very good work on the topic by Hardy Simgen et.al. at Heidelberg (Hardy's PhD thesis is a must-read). I came to the conclusion that the pore size distribution in the charcoal was paramount for removal – range of pore size required is unclear in Xe-Rn system

Copper wool traps

- Five sections of ~14" of clear plastic tubing
- All same diameter except Trap5: 3x larger
- Goals:
 - learn how to pack at constant density
 - measure pressure vs. flow curves
- Trap#I #4: max. to min. packing (2.5–I.2g/in)
- Trap#5 same packing as Trap#1
- Trap#4 very unhomogeneous, not measured

Recycle MnOx compressor to measure impedance

Copper wool traps status

- Extracted packing impedance k from
- $dP = kA \Phi / L$
- Choose low packing
- Trap built 16"L 1/2" OD
- Ready for testing cold

OFHC Copper spheres

- Litterature abounds with analytical treatment of flow in "columns packed with spherical particles of uniform size" – easier to model
- Identified supplier: Industrial Tectonics
- Acquired 500k spheres 20+-0.5th dia (1th = 1 mil = 1E-3 inch = 25.4 µm) so ~0.5 mm dia
- Filled one trap 16" long, 1/2" OD
- Ready to be tested

Industrial Tectonics Inc 7222 W. Huron River Drive Dexter MI 48130734-426-4681

500k COPPER-OFHC 0.020"+/-.0005

Industrial Tectonics Inc 7222 W. Huron River Drive

500k COPPER-OFHC 0.020"+/-.0005

Industrial Tectonics Inc 7222 W. Huron River Drive Dexter MI 48130734-426-4681

500k COPPER-OFHC 0.020"+/-.0005

Open Cell Copper Foam

- void fraction up to 97%vol
- min. pore size depends on manufacturer
- e.g. READE Advanced Materials
- Typical orders are >IM\$; not interested in smaller contracts yet
- Similar experience w/ company in Québec
- Asia a major client used for advanced µP cooling
- Aspect ratio not trivial (sheets 20x20 cm², 2 mm thick)
- Clean in ²²⁶Ra ? Integrity kept after EXO-cleaning (HCI, HN0₃) ?

on hold for now

ominal Pore Size (µm)	600	300	150	50
Standard Thickness (mm)	2	1	0.5	0.5
Standard Porosity (%)	95-97	94-96	80-90	80-90

Examples from other manufacturers

Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, Georgia Chem. Mater., 2004, 16 (25), pp 5460–5464

Grain based >

< Needles based

Dalian Victory Metallurgy Imp.& Exp., Ltd

EXO-200 Radon Trap Model#1

Model#2: random walk simulation

Need 51 days.. model needs improvements

Need data, but clear: need wider+longer trap geometry

Oleg Li SNOLAB Engineer

Bruce Cleveland SNOLAB Senior Scientist

Jared Johnson LU 4Y B.Sc

not on picture:

- Ken McFarlane SNOLAB Engineer
- Carol Woodliffe SNOLAB Technician
- Lina Anselmo SNOLAB Technician

Conclusions

- Very low level assay capability for emanation of radon, thoron and actinon
- Development of trap for Rn in Xe at 1 atm, 20LPM and 99.99% removal efficiency
- Promising first tests
- Pursue copper, acquire data while refining model