Low background techniques in XMASS

LRT2010, SNOLAB, Sudbury, Canada 29th Aug. 2010

A. Takeda for the XMASS collaboration Kamioka Observatory, ICRR, University of Tokyo

1. XMASS experiment
2. Background reduction
3. Summary

1. XMASS experiment

What's XMASS

Multi purpose low-background experiment with liq. Xe

Y. Suzuki et al., hep-ph/0008296

- Xenon MASSive detector for solar neutrino (pp/7Be)
- Xenon neutrino MASS detector ($\beta\beta$ decay)
- Xenon detector for Weakly Interacting MASSive Particles (DM search)

Structure of the 800kg detector

Single phase liquid Xenon detector

- 857kg of liquid xenon, 100kg in the fiducial volume
- 642 PMTs (630 hex +12 round)
- Q.E. : 28-39%
- Photo coverage: 62.4%
- 3D event reconstruction
- 5keVee threshold with 4.4pe/keVee

Hex: R10789-11

Round: R10789-11MOD

2. Background reduction

(1) BG from detector materials

- 642 PMTs: Main BG source although RI level is 1/100 of ordinary PMT.
- OFHC copper: Bring in the mine < 1month after electrorefining (Mitsubishi Material Co.)
- Other materials: All the components were selected with HPGe and ICP-MS. (>250 samples were measured) The total RI level is much lower than PMT BG.

We developed new ultra low RI PMT with Hamamatsu. (1/100 of ordinary one).

Self-shielding for BG from PMTs

(2) External BG (y, n) from rock

- γ and n from rock are sufficiently reduced by a 2m thickness pure water tank:
 - $\gamma < \gamma$ from PMT, n << 10⁻⁴ /day/kg
- 10m dia. and 11m height water tank for future extensions.
- 72 20" PMTs for active veto for CR μ .

(3) Internal BG (1) : Kr

- Kr (⁸⁵Kr: Q_{β} =687keV, τ =10.8y) can be reduced by distillation.
- Our goal: Kr < 1ppt (<> <10⁻⁵ /day/keV/kg)
- 5 order of magnitude reduction with 4.7kg/hr processing time was achieved. K. Abe et al. for XMASS collab., Astropart. Phys. 31 (2009) 290
- Target value can be achieved in 10 days for 1ton xenon.
 - $(0.1ppm \rightarrow 1ppt)$

Boiling point

(@0.2MPa)

140~150 K

178 K

Xe

Kr

commercial

Distillation tower

(4) Internal BG (2) : Rn

- Measured Rn emanation rate from all materials is < 15mBq
- Our goal: ²²²Rn < 0.6 mBq/ton (<10⁻⁵ /kev/day/kg)
- Continuous Rn removal with xenon circulation is needed.

Rn removal test in gas circulation

- Charcoal whose suitable hole size (~10 Å) was selected.
- Tested in -105°C, with 10Bq Rn in xenon.

Charcoal housing

- More than 85% Rn removal was achieved. (charcoal weight: 25g, trap length: 60cm, flow rate: 0.5L/min). Rn removal efficiency is now being improved with more suitable trap length and flow rate.
- In the case of Rn removal emanated from only gas phase, our goal (<0.6mBq) can be achieved with 1.0 L/mim flow rate.
- Rn removal emanated from liquid phase is now under study.

Current status and schedule

 All the parts of the 800kg detector is ready. Now, assembly work is going.

- Aug.- early Sep.: Detector assembly will be finished.
- Sep.: Distillation (Kr: 0.1ppm->1ppt). Evacuation of detector, water filling test, and liquid xenon filling will be done.
- Oct. : Gas and liquid circulation will start for reducing contamination. Data taking will start.

3. Summary

- Expected BG level: < 10⁻⁴ /keV/day/kg. (around threshold (~5keVee), 100kg FV)
- Expected sensitivity is 2x10⁻⁴⁵ cm² for SI interaction with one year operation.
- Detector assembly work will be finished by the beginning of September.
- Data taking will be started in October.

Backup

PMT installation to upper half sphere

Upper sphere after all PMT installation

Inner Vacuum Chamber (IVC)

Upper part of IVC

Lower part of IVC

Current status and schedule

- All the parts of the 800kg detector is ready.
- Now, assembly work is going.

RI measurement with HPGe

• 3 HPGe in the Kamioka mine are used

- All the components were measured used for XMASS detector.
- Number of sample measured is more than 250
- Sample is sealed inside the EVOH bag during measurement avoid lose Rn from sample.

BG from other materials

- Rn removal in gas circulation
 - Charcoal whose suitable hole (10A) size was selected

Charcoal A 25g

21

Rn level in the laboratory

Neutron attenuation by water tank

