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Radon Generated Backgrounds
• Ultra-low background experiments aim for unprecedented levels 

of backgrounds 
• Detector materials exposed to radon can potentially leave behind 

long-lived radioactive contaminants.
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After decay, daughters are 
prone to stick to dust or 

surfaces
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A Background from Radon Daughters
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MiniCLEAN210Po 206Pb

Long-lived radon daughters on the surface of a target volume can 
cause a background signal 

Nuclear 
Recoil

If the 210Po is on the surface, the 
recoiling nucleus can enter the 

target volume
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Models of radon daughter deposition

• “Indoor Air Model” [Nazaroff & Nero 1988]
- Rate of deposition is proportional to Rn concentration (C), surface area (S), 

and deposition “velocity” (vd) 
- Rd = vd S C
- Deposition velocity is a function of particle concentration
‣ More particles in the air ➔ More [closer] places for daughters to stick ➔ 

A lower deposition velocity (0.08 m/h)
‣ Less particles in the air ➔ Greater deposition velocity (8 m/h)
‣ Not that simple! Effect of of air circulation, HEPA filtering, clean room, 

materials?

• Borexino Model [ Leung, LRT 2004]
- Surface deposition also proportional to deposition velocity 
- σ (210Pb) = C vd t
- For a clean room, vd = 0.0001 m/h
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Development of a deposition model

• Test the known models or develop a new one

• Determine deposition rate as function of:
- particle concentration
- radon concentration
- HEPA filtering and flow
- materials
- surface preparation
- electrostatics
- temperature, humidity, ?

• Expose materials to radon under controlled environmental 
conditions

• Directly count alpha-emitters on the material surface

5
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Radon Daughter Deposition Setup
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Procedure

• Exposure to radon for a varying amount of radon concentrations 
- all other conditions fixed

- acrylic and copper

• Material is exposed for fixed amount of time
- Deposition of daughters occur 

• Material is removed 
- Counted on an alpha counter
- Daughters decay
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Po Alpha Peaks

• Clear separation of two α emitters
- 218Po decay α particles at 6 MeV
- 214Po decay α particles at 7.8 MeV
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Model Radon Daughter Decay
• The decay of the Rn daughters after deposition and while being 

counted is given by:

• Solve and fit to α-decay curves to get number of Rn daughters 
present at conclusion of deposition: t = 0

9

Decay curves

The decay of the Rn daughters after deposition and while being
counted is given by:

N1 ⇒ # of 218Po atoms
N2 ⇒ # of 214Pb atoms
N3 ⇒ # of 214Bi atoms
N4 ⇒ # of 214Po atoms

dN1

dt
= −λ1N1

dN2

dt
= (1− r)λ1N1 − λ2N2

dN3

dt
= λ2N2 − λ3N3

dN4

dt
= λ3N3 − λ4N4

Solve and fit to α-decay curves to get initial number of Rn
daughters present at conclusion of deposition, t = 0.
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Daughters Follow Expected Decay Curve
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The fits provide the final number of 218Po, 214Pb, and 214Bi 
atoms on the sample after exposure



Daughter deposition curves

Assume a linear deposition model, the number of Rn daughters on
the sample during deposition is given by:

R1 ⇒ deposition rate of 218Po
R2 ⇒ deposition rate of 214Pb
R3 ⇒ deposition rate of 214Bi

dN1

dt
= R1 − λ1N1

dN2

dt
= R2 + (1− r)λ1N1 − λ2N2

dN3

dt
= R3 + λ2N2 − λ3N3

Solve and fit to get the number of daughter atoms left on the
sample after deposition as a function of deposition time.
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Radon Daughter Deposition Model
• Assume a linear deposition model, the number of Rn daughters 

on the sample during deposition is given by:

• Solve and fit to a series of tests to get Ri

• Define R = d A C
- d is atoms m2 min-1 m3 Bq-1

- A is area
- C is radon concentration
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Daughter density vs. Rn Concentration
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The fit provides the deposition rate of three daughters
This case is for acrylic in unfiltered chamber with a flow rate of 2.5 L/min

From fits 
to decay 
curves
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Effect of Filtration and Material
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Not a large difference between acrylic and Cu
Filtration suppresses late daughters

Acrylic Cu
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Model Sets Exposure Requirements
• Based on the previous fits, radon exposure limits can be placed to 

achieve a desired surface activity.
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Preliminary
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Summary

• Detector materials exposed to radon at any stage of 
construction can leave behind long-lived backgrounds.

• In order to set manufacturing and construction requirements for 
radon control, the deposition of radon daughters onto surfaces 
must be understood.

• By exposing materials to radon under controlled conditions 
enables a measurement of the daughters present and the 
development of a surface deposition model. 

• HEPA filtration and flow rates affect radon daughter deposition 
rates onto surfaces

15
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Radon Daughter Deposition Setup
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1. Rn source
2. Continuous Rn monitor
3. Exposure chamber
4. Particle counter
5. HEPA filter
6. Pump
7. Flowmeter


