A Radon Daughter Deposition Model for Low Background Experiments

> V. E. Guiseppe University of South Dakota

S. R. Elliott, A. Hime, K. Reilage, S. Westerdale Los Alamos National Laboratory

LRT 2010

Radon Generated Backgrounds

- Ultra-low background experiments aim for unprecedented levels of backgrounds
- Detector materials exposed to radon can potentially leave behind long-lived radioactive contaminants.

Radon Generated Backgrounds

- Ultra-low background experiments aim for unprecedented levels of backgrounds
- Detector materials exposed to radon can potentially leave behind long-lived radioactive contaminants.

A Background from Radon Daughters

Long-lived radon daughters on the surface of a target volume can cause a background signal

Models of radon daughter deposition

- "Indoor Air Model" [Nazaroff & Nero 1988]
 - Rate of deposition is proportional to Rn concentration (C), surface area (S), and deposition "velocity" (v_d)
 - $R_d = v_d S C$
 - Deposition velocity is a function of particle concentration
 - More particles in the air → More [closer] places for daughters to stick → A lower deposition velocity (0.08 m/h)
 - Less particles in the air \rightarrow Greater deposition velocity (8 m/h)
 - Not that simple! Effect of of air circulation, HEPA filtering, clean room, materials?
- Borexino Model [Leung, LRT 2004]
 - Surface deposition also proportional to deposition velocity
 - σ (²¹⁰Pb) = C v_d t
 - For a clean room, $v_d = 0.0001$ m/h

Development of a deposition model

- Test the known models or develop a new one
- Determine deposition rate as function of:
 - particle concentration
 - radon concentration
 - HEPA filtering and flow
 - materials
 - surface preparation
 - electrostatics
 - temperature, humidity, ?
- Expose materials to radon under controlled environmental conditions
- Directly count alpha-emitters on the material surface

Development of a deposition model

- Test the known models or develop a new one
- Determine deposition rate as function of:
 - particle concentration
 - radon concentration
 - HEPA filtering and flow
 - materials
 - surface preparation
 - electrostatics
 - temperature, humidity, ?
- Expose materials to radon under controlled environmental conditions
- Directly count alpha-emitters on the material surface

Radon Daughter Deposition Setup

Procedure

- Exposure to radon for a varying amount of radon concentrations
 - all other conditions fixed
 - acrylic and copper
- Material is exposed for fixed amount of time
 - Deposition of daughters occur
- Material is removed
 - Counted on an alpha counter
 - Daughters decay

Po Alpha Peaks

- Clear separation of two α emitters
 - ²¹⁸Po decay α particles at 6 MeV
 - ²¹⁴Po decay α particles at 7.8 MeV

Model Radon Daughter Decay

 The decay of the Rn daughters after deposition and while being counted is given by:

 $N_1 \Rightarrow \# ext{ of } ^{218} ext{Po atoms}$ $N_2 \Rightarrow \# ext{ of } ^{214} ext{Pb atoms}$ $N_3 \Rightarrow \# ext{ of } ^{214} ext{Bi atoms}$ $N_4 \Rightarrow \# ext{ of } ^{214} ext{Po atoms}$

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$
$$\frac{dN_2}{dt} = (1 - r)\lambda_1 N_1 - \lambda_2 N_2$$
$$\frac{dN_3}{dt} = \lambda_2 N_2 - \lambda_3 N_3$$
$$\frac{dN_4}{dt} = \lambda_3 N_3 - \lambda_4 N_4$$

 Solve and fit to α-decay curves to get number of Rn daughters present at conclusion of deposition: t = 0

Daughters Follow Expected Decay Curve

The fits provide the final number of ²¹⁸Po, ²¹⁴Pb, and ²¹⁴Bi atoms on the sample after exposure

Radon Daughter Deposition Model

 Assume a linear deposition model, the number of Rn daughters on the sample during deposition is given by:

 $R_1 \Rightarrow$ deposition rate of ²¹⁸Po $R_2 \Rightarrow$ deposition rate of ²¹⁴Pb $R_3 \Rightarrow$ deposition rate of ²¹⁴Bi

$$\frac{dN_1}{dt} = R_1 - \lambda_1 N_1$$
$$\frac{dN_2}{dt} = R_2 + (1 - r)\lambda_1 N_1 - \lambda_2 N_2$$
$$\frac{dN_3}{dt} = R_3 + \lambda_2 N_2 - \lambda_3 N_3$$

- Solve and fit to a series of tests to get R_i
- Define R = dAC
 - d is atoms m² min⁻¹ m³ Bq⁻¹
 - A is area
 - C is radon concentration

Daughter density vs. Rn Concentration

The fit provides the deposition rate of three daughters This case is for acrylic in unfiltered chamber with a flow rate of 2.5 L/min

Effect of Filtration and Material

LRT 2010

Model Sets Exposure Requirements

• Based on the previous fits, radon exposure limits can be placed to achieve a desired surface activity.

Summary

- Detector materials exposed to radon at any stage of construction can leave behind long-lived backgrounds.
- In order to set manufacturing and construction requirements for radon control, the deposition of radon daughters onto surfaces must be understood.
- By exposing materials to radon under controlled conditions enables a measurement of the daughters present and the development of a surface deposition model.
- HEPA filtration and flow rates affect radon daughter deposition rates onto surfaces

Radon Daughter Deposition Setup

