# BetaCage: an ultra-sensitive screener for surface contaminants

#### Zeesh Ahmed

California Institute of Technology

in collaboration with Sunil Golwala, Darren Grant (Alberta), Mark Kos (Syracuse), Bob Nelson, Richard Schnee (Syracuse), Boqian Wang (Syracuse)

> LRT 2010 August 28, 2010

# **Motivation**

- CDMS limiting background is betas from surface contamination
  - Requirement for SuperCDMS SNOLAB (~100kg Ge) is ~ 2x10<sup>-5</sup> cm<sup>-2</sup> keV<sup>-1</sup> day<sup>-1</sup>
- Challenges with traditional counting
  - Energy thresholds
  - Backscattering
  - Long integration time to achieve high sensitivity with small counting areas
  - Some isotopes probed only by beta emission

| Method            | Applicable Isotopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICP-MS (1 ppb)    | <sup>40</sup> K <sup>48</sup> Ca <sup>50</sup> V <sup>87</sup> Rb <sup>92</sup> Nb <sup>98</sup> Tc <sup>113</sup> Cd <sup>115</sup> In <sup>123</sup> Te <sup>138</sup> La <sup>176</sup> Lu <sup>182</sup> Hf <sup>232</sup> Th <sup>235</sup> U <sup>238</sup> U <sup>236</sup> Np <sup>250</sup> Cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ICP-MS<br>(1 ppt) | <sup>10</sup> Be <sup>36</sup> Cl <sup>60</sup> Fe <sup>79</sup> Se <sup>93</sup> Zr <sup>94</sup> Nb <sup>97</sup> Tc <sup>99</sup> Tc <sup>107</sup> Pd <sup>126</sup> Sn<br><sup>129</sup> I <sup>135</sup> Cs <sup>137</sup> La <sup>154</sup> Eu <sup>158</sup> Tb <sup>166m</sup> Ho <sup>208</sup> Bi <sup>208</sup> Po <sup>209</sup> Po <sup>252</sup> Es                                                                                                                                                                                                                                                                                                                                                                                                                               |
| γ<br>(HPGe)       | <sup>40</sup> K <sup>50</sup> V <sup>60</sup> Fe <sup>60</sup> Co <sup>93</sup> Zr <sup>92</sup> Nb <sup>94</sup> Nb <sup>93</sup> Mo <sup>98</sup> Tc <sup>99</sup> Tc <sup>101</sup> Rh <sup>101m</sup> Rh <sup>102m</sup> Rh <sup>109</sup> Cd <sup>121m</sup> Sn<br><sup>126</sup> Sn <sup>125</sup> Sb <sup>129</sup> I <sup>134</sup> Cs <sup>137</sup> Cs <sup>133</sup> Ba <sup>138</sup> La <sup>145</sup> Pm <sup>146</sup> Pm <sup>150</sup> Eu <sup>152</sup> Eu <sup>154</sup> Eu <sup>155</sup> Eu <sup>157</sup> Tb<br><sup>158</sup> Tb <sup>166m</sup> Ho <sup>173</sup> Lu <sup>174</sup> Lu <sup>176</sup> Lu <sup>172</sup> Hf <sup>179</sup> Ta <sup>207</sup> Bi <sup>208</sup> Bi <sup>232</sup> Th <sup>235</sup> U <sup>238</sup> U <sup>236</sup> Np <sup>241</sup> Pu |
| α                 | <sup>210</sup> Pb <sup>208</sup> Po <sup>209</sup> Po <sup>228</sup> Ra <sup>227</sup> Ac <sup>232</sup> Th <sup>235</sup> U <sup>238</sup> U <sup>236</sup> Np <sup>241</sup> Pu <sup>250</sup> Cm <sup>252</sup> Es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| β/ppt MS          | <sup>10</sup> Be <sup>36</sup> Cl <sup>79</sup> Se <sup>97</sup> Tc <sup>107</sup> Pd <sup>135</sup> Cs <sup>137</sup> La <sup>154</sup> Eu <sup>209</sup> Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\beta$ only      | <sup>3</sup> H <sup>14</sup> C <sup>32</sup> Si <sup>63</sup> Ni <sup>90</sup> Sr <sup>106</sup> Ru <sup>113m</sup> Cd <sup>147</sup> Pm <sup>151</sup> Sm <sup>171</sup> Tm <sup>194</sup> Os <sup>204</sup> Tl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# BetaCage

#### • Time Projection Chamber

- Neon + Methane (quench)
- Trigger, Veto MWPCs for rejection of through-going electrons
- 40cm drift region (optimized for <200 keV electrons)</li>
- Position information to define fiducial volume and reject self-background
- Im<sup>2</sup> counting area
  - Rapid turnaround for measuring samples



# BetaCage

#### • Ultraclean materials

- Counted plastics for support structure, chamber
- Stainless Steel sense wires
- Assembly in glovebox, in radon suppressed cleanroom
- Underground + Shielding
  - Minimize external gamma background to ~I dru Ge equivalent



## **Backgrounds and Sensitivity**

- Primary background from gammas (~3x10<sup>-5</sup> cm<sup>-2</sup> keV<sup>-1</sup> day<sup>-1</sup>)
  - Interact in gas, resulting in electron triggers
  - Interact in sample, resulting in electron triggers
- Wire, <sup>14</sup>C backgrounds (<10<sup>-6</sup> cm<sup>-2</sup> keV<sup>-1</sup> day<sup>-1</sup>)



# Prototype development

### • Proof of principle

- 50cm x 50cm x 20cm (<sup>14</sup>C beta endpoint 156 keV contained)
- Designed without careful attention to radiopurity
- Use cheaper & better characterized P-10 (90% Argon + 10% Methane)

#### Goals

- Learn to construct MWPCs
- Study functionality with radioactive sources
- Determine position resolution and rejection capability
- Measure drift properties of Neon

# Prototype status

### • EM simulations & overall design

- Wire properties (diameter, pitch, spacing)
- Field cage and drift times
- Gain 10<sup>4</sup>-10<sup>5</sup>







# Prototype status

- Gas handling
- HV supply, filtering
- Basic DAQ







# **MWPC Construction**

#### • Layered wire planes

- Wire attachment with solder, epoxy, silver paint
- Stresses in plastic hard to relieve
- Mechanical tolerance required by gain variation constraints couldn't be met.





# **MWPC** Construction

#### • "Block" MWPC

- Single MWPC assembled from 4 "blocks"
- Wire attachment with precision crimped feedthrus
- Annealing and machining cycles allow 50 micron precision in wire positioning









# Updated design



# **Current Status and Future Plans**

- Waiting in queue at Alberta machine shop to begin MWPC fabrication
- Full system simulation with tracks, pulse signal and noise being implemented
- Transition to multi-channel MIDAS DAQ
- Anticipate full characterization run with sources in Winter 2010-2011
- Begin capital purchases for BetaCage fab in Spring 2011





# Cleanroom at Syracuse

