The BiPo detector for ultralow radioactivity measurements LRT 2010 - SNOLAB

Mathieu BONGRAND

for the SuperNEMO Collaboration

LAL Orsay

2010/08/28

The BiPo Detector Principle

The R&D Phase for the BiPo Detector

The BiPo3 Detector Status

The BiPo Detector Principle

The R&D Phase for the BiPo Detector

The BiPo3 Detector Status

The NEMO3 Experiment

The NEMO3 experiment is running in the *Laboratoire Souterrain de Modane* since 2003

High radon phase I Feb. 2003 - Oct. 2004 $A_{int}(^{222}\text{Rn}) \sim 38 \text{ mBq/m}^3$

[NEMO collaboration, NIM A 606 (2009) 449-465]

 \rightarrow see also Frederic Perrot's talk on SuperNEMO Mathieu BONGRAND - LAL

Low radon phase II Dec. 2004 - Now $\mathcal{A}_{int}(^{222}\mathrm{Rn})\sim 6.5~\mathrm{mBq/m}^3$

The NEMO3 Detector

- About 10 kg of 2β enriched isotopes in thin vertical foils (60 mg/cm²):
 - ▶ 0ν2β: ¹⁰⁰Mo (6.9 kg) & ⁸²Se (932 g)
 - ► $2\nu 2\beta$: ¹³⁰Te (454 g), ¹¹⁶Cd (405 g), ¹⁵⁰Nd (37 g), ⁹⁶Zr (9 g) & ⁴⁸Ca (7 g)
- Tracking chamber: 6180 drift cells in geiger mode + B field (25 G)
- Calorimeter: 1940 polystyrene scintillators, PMMA light-guides & low radioactivity PMTs
- Shielding: LSM (4800 m.w.e.), borated water, wood & pure iron

NEMO3 Results: $0\nu 2\beta$ Search

 100 Mo (6.9 kg) & 82 Se (932 g): \sim 4.5 yr [phase I + II]

 \blacktriangleright ²⁰⁸TI & ²¹⁴Bi in the sources is one of the main backgrounds

 \rightarrow see also Frederic Perrot's talk on SuperNEMO Mathieu BONGRAND - LAL

NEMO 3

2γββ¹³³Μο Radon

int BKG

0v66¹³³Se

3.2 3.4 3.6

E_{TOT} (MeV)

for T. (0y)=10²³y

2.6 2.8 3

NEMO3 Sources Radiopurity

- ▶ 100 Mo requirements: $\mathcal{A}(^{208}$ Tl) < 20 & $\mathcal{A}(^{214}$ Bi) < 300 μ Bq/kg
- ▶ HPGe measurements (CENBG/LSM) in mBq/kg:

Source	Mass	Meas	Time	^{40}K	^{214}Bi	208 TI
¹⁰⁰ Mo [m]	2.5 kg	0.73 kg	840 h	<5	< 0.39	< 0.11
¹⁰⁰ Mo [c]	4.4 kg	0.74 kg	648 h	<6	< 0.34	<0.10
82 Se [c]	932 g	800 g	628 h	$55{\pm}5$	$1.2{\pm}0.5$	$0.4{\pm}0.1$

[m]: metallic, [c]: composite - [R. Arnold et al, NIM A 536 (2005) 79-122]

 The NEMO3 measurements show small tensions (mBq/kg):

Source	$^{214}Bi\ (\beta - \alpha)$	$^{208}TI (\beta - n\gamma)$
¹⁰⁰ Mo [m]	<0.1	$0.11{\pm}0.01$
¹⁰⁰ Mo [c]	<0.15	$0.12{\pm}0.01$
⁸² Se [c]	$0.53{\pm}0.18$	$0.44{\pm}0.04$

► ¹⁰⁰ Mo & ⁸²Se foils will be remeasured by the BiPo detector Mathieu BONGRAND - LAL

The SuperNEMO Project

- 🚺 👬 🚍 📑 💽 📡 🦉 🜌 🖉 🔛 👫 📓

	NEMO3	SuperNEMO
Mass	7 kg	100 kg
lsotope	100 Mo	$^{82}Se or \ ^{150}Nd$
Foil density	60 mg/cm^2	40 mg/cm 2
Energy resolution (FWHM)		
@ 1 MeV	15 %	7 %
@ 3 MeV	8 %	4 %
Radon (²²² Rn)	\sim 6.5 mBq/m 3	$\sim 0.1~{ m mBq/m^3}$
Sources contaminations		
$\mathcal{A}(^{208}TI)$	$<$ 20 μ Bq/kg	$<\!\!2~\mu{ m Bq}/{ m kg}$
$\mathcal{A}(^{214}Bi)$	$<$ 300 μ Bq/kg	$<$ 10 μ Bq/kg

First module with 7 kg of 82 Se in 2013: $\mathcal{T}_{1/2}^{0\nu} > 6.5 \ 10^{24}$ yr in 2 years Full detector 2016 in LSM extension: $\mathcal{T}_{1/2}^{0\nu} > 1 \ 10^{26}$ yr in 3 years Mathieu BONGRAND - LAL

The BiPo Detector Principle

The R&D Phase for the BiPo Detector

The BiPo3 Detector Status

The BiPo Detector Principle

²¹⁴Bi and ²⁰⁸Tl contaminations measured by BiPo processes from natural radioactivity chains:

β & α particles detected by thin radiopure plastic scintillators coupled to light-guides and low radioactivity PMTs:

The BiPo Detector Backgrounds

- 3 sources of backgrounds should be considered:
 - ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl) contaminations on the surface of the scintillators

(include volume contaminations within ${\sim}100~\mu{\rm m}$ thickness)

- ²²²Rn and ²²⁰Rn migration between the source and the scintillators
- random coincidences (external γ)

The BiPo Detector Principle

The R&D Phase for the BiPo Detector

The BiPo3 Detector Status

The R&D Phase for the BiPo Detector

4 years of R&D to test the feasibility and measure the backgrounds to determine the sensitivity:

- Starting tests and constructions in 2006
- ► BiPo1 prototype: 0.8 m² Feb 2008 to now in LSM → first results with 10 d data presented @ LRT 2006 Aussois Recent publication: doi:10.1016/j.nima.2010.07.037
- ▶ BiPo2 prototype: 0.56 m² Jul 2008 to now in LSM
- BiPo3 detector: 3.24 m² under construction in LAL

The BiPo1 Prototype

BiPo1 prototype: 0.8 $\ensuremath{\mathsf{m}}^2$ - Feb 2008 to now in LSM

- 20 similar high radiopurity modules:
 - 200x200x3 mm³ Polystyrene scintillators [POPOP + pTp]
 - entrance face aluminized with 200 nm of ultra pure aluminum
 - PMMA light guides
 - side reflector in Teflon (0.2 mm)
 - ▶ 5" Hamamatsu R6594-MOD low background PMTs
- Lead and pure iron shielding, radon free air flushing
- ▶ MatAcq VME digitizer boards: 2.5 μ s @ 1 GS/s, 1 V & 12 bit
- trigger boards for longer delays (²¹⁴Bi)

BiPo1 Foils Measurement

- ► Calibrated 150 μ m aluminium foil (40 mg/cm²) in one module with $\mathcal{A}(^{212}\text{Bi} \rightarrow ^{212}\text{Po}) = 0.19 \pm 0.04 \text{ Bq/kg}$
- ▶ 160 days of data and 1309 BiPo events detected:
 - ▶ $A(^{212}\text{Bi} \rightarrow^{212} \text{Po}) = 0.16 \pm 0.01 \ stat. \pm 0.03 \ syst. Bq/kg$
 - $\mathcal{T}_{1/2} = 276 \pm 12 \; (stat.) \; \text{ns} \; [\mathcal{T}_{1/2}(^{212}\text{Po}) = 299 \; \text{ns}]$
 - \blacktriangleright β and α spectra in good agreement with expectation
- Validation of the BiPo1 technique!

BiPo1 e^-/α Discrimination

- ▶ Longer half-life scintillation states excited by α particles but not by e^- because of much larger energy loss
- \blacktriangleright The signal tail is higher for α particles than e^-
- ► ²⁴¹Am / ²⁰⁷Bi runs and aluminium calibrated to determine discrimination parameters: $\chi = \frac{q_{tail}}{Q_{total}}$
- ▶ Cut $\chi > 0.2$: 90% α saved and 85% e^- rejected

BiPo1 Backgrounds Measurements

▶ Random coincidences: $\tau_{BiPo1} \sim 20 \text{ mHz} @ 150 \text{ keV}$

- negligible for coincidences within 1 μ s: ²⁰⁸Tl @ 2 μ Bq/kg
- ► e^-/α discrimination needed to reduce the rate of coincidences within 1 ms: ²¹⁴Bi @ 10 µBq/kg
- Scintillators ²⁰⁸TI background:
 - ▶ bulk: $A(^{208}\text{TI}) < 0.3 \ \mu\text{Bq/kg}$ (90 % C.L.)
 - ► surface: $A(^{208}\text{TI}) = 1.5 \pm 0.3 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \mu \text{Bq/m}^2$

- Scintillators ²¹⁴Bi background:
 - dominated by radon background
 - solutions under test: radon protection film (EVOH), improvement of radon free air flushing system...

The BiPo2 Prototype

- ► More compact and sophisticated technique with spatial position reconstruction (~ 2 cm resolution) to significantly reduce background
- 2 polished scintillator plates 0.56 m²:
 - ► 75x75x1 cm³ Polystyrene scintillators [POPOP + pTp]
 - naked scintillators
 - PMMA light guides
 - side reflector in Teflon (0.2 mm)
 - 3" Hamamatsu R6091-MOD low background PMTs
- ▶ BiPo2 encountered several problems (calibration, acquisition...) from the beginning and it was long and difficult to solve → results coming soon

The BiPo Detector Principle

The R&D Phase for the BiPo Detector

The BiPo3 Detector Status

The BiPo3 Detector Design

- The BiPo3 detector of 3.24 m² can measure 1.3 kg of SuperNEMO ⁸²Se foil (40 mg/cm²) with 6.5 % efficiency
- 2 identical modules of 2.7x0.6 m²
- Each high radiopurity module consists of 18x2 light lines (total 72):
 - ► 300x300x2 mm³ Polystyrene scintillators [POPOP + pTp]
 - entrance face aluminized with 200 nm of ultra pure aluminum
 - PMMA light guides
 - side reflector in Tyvek (0.2 mm)
 - ▶ 5" Hamamatsu R6594-MOD low background PMTs

The BiPo3 Detector Sensitivity

- The BiPo3 detector of 3.24 m² can measure 1.3 kg of SuperNEMO ⁸²Se foil (40 mg/cm²) with 6.5 % efficiency
- ▶ We assume BiPo1 background from the scintillator surface: $A(^{208}\text{TI}) \sim 1.5 \ \mu\text{Bq/m}^2 (^{214}\text{Bi} \text{ is still unknown in BiPo1})$
- Surface background reduced by factor 3 with the source
- ▶ BiPo3 sensitivity for SuperNEMO ⁸²Se sources is:
 - $\mathcal{A}(^{208}\text{Tl}) < 10$ 12 μ Bq/kg in 1 month
 - $\mathcal{A}(^{208}\text{Tl}) < 3$ 4 μ Bq/kg in 6 months

The BiPo3 Prototype

A new BiPo3 prototype in June 2010 with 2 light-lines to:

- validate improvements and new features compared to BiPo1
- decide the thickness of the scintillators (counting rate)
- test cross-talks and LED calibration
- check again the backgrounds

After 43 days of data [preliminary]:

- ▶ no 212 BiPo (208 Tl) event observed: $\mathcal{A}(^{208}$ Tl) < 10 μ Bq/m²
- radon background comparable with BiPo1

(no improvement made for this prototype before BiPo1 results) Mathieu BONGRAND - LAL

Summary

► NEMO3 data and HPGe measurements of 2β sources show a small tension in ²⁰⁸TI

 \rightarrow the BiPo detector should remeasure these sources

- The BiPo1 prototype validated the technique a gave very good results [doi:10.1016/j.nima.2010.07.037]
- The BiPo2 prototype running was problematic from the beginning
- The BiPo3 prototype is helping us to finalize BiPo3 design
- The BiPo3 detector should be running before summer 2011 with sensitivity for SuperNEMO ⁸²Se sources:
 - $\mathcal{A}(^{208}\text{Tl})$ < 10 12 μ Bq/kg in 1 month
 - ▶ A(²⁰⁸TI) < 3 4 µBq/kg in 6 months</p>