A High Efficiency Neutron Veto Based on Boron-Loaded Liquid Scintillator

Alex Wright Princeton University LRT2010, 28 August 2010

Neutron Vetoes in Dark Matter Experiments

- Single scatter neutron events are a "perfect background" for direct detection dark matter experiments
- Vetoing these events with high efficiency can significantly increase the sensitivity of an experiment
- Also provides an in-situ measurement of the neutron environment
 - Significantly strengthen any claim of a dark matter detection

WARP.

Pavia

from L.Grandi PhD. Thesis, University of Zeplin II, from astro-ph/ 0701858v2

A Neutron Veto Using Boron-Loaded Liquid Scintillator

Immerse the dark matter detector in boron-loaded liquid scintillator

- R Baseline: 1 m thick liquid scintillator loaded with 5.2% w/w natural boron
- Veto efficiency simulations with Geant4
- R Practical considerations:
 - R Light yield
 - R Veto-induced deadtime

Pure Scintillator

In pure scintillator, the mean neutron capture time is long (~250 μ s) so long veto windows are required to get high efficiency

- Very low background rates are required in the veto to avoid large deadtimes
- Neutron capture on protons produces gamma rays, which can propagate some distance before interacting

Veto Window	Veto Rate for 5% Deadtime
10 µ s	5,100 Hz
100 µ s	510Hz
1 ms	51 Hz
Neutron Capture in Pure Scintillator	
Fraction of Events / 10mm	— Capture Radius — Trigger Radius

600 800 1000 1200 1400 1600 1800

Radius (mm)

 10^{-5}

 10^{-6}

Boron Loading

			st I	Boron-loaded Scintillator
Detection Efficiency	Time in Pure	Time in Boron		Mean 2.826e-07
	Scintillator (μ s)	Scintillator (μ s)	ti	Pure Scintillator
70%	0.08	0.08	$\frac{9}{10^{-2}}$	Mean 2.606e-05
90%	7.8	0.1	lot	RMS 0.000111
95%	185	1.7	·01 10 ⁻³	
98%	421	3.8	Frac	
99%	603	5.4	10-4	
99.5%	788	7.0	Ē	
99.9%	1282	10.9	10 ⁻⁵	
99.99%	_	22.0	10-6	
			10-8	10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} Veto Trigger Time (s)

("Boron scintillator" has 5.2% w/w natural boron)

Boron Loading

 ${}^{10}\text{B} + n \rightarrow {}^{7}\text{Li}^* + \alpha \rightarrow {}^{7}\text{Li} + \alpha + 478 \text{ keV } \gamma \quad (93.7\%)$ $\rightarrow {}^{7}\text{Li} + \alpha \qquad (6.4\%)$

Recoil fragments have ~2 MeV kinetic energy, quenched to 50-65 keV_{ee}

R Detecting the recoil particles eliminates gamma-propagation

Boron Loading

 ${}^{10}\text{B} + n \rightarrow {}^{7}\text{Li}^* + \alpha \rightarrow {}^{7}\text{Li} + \alpha + 478 \text{ keV } \gamma \quad (93.7\%)$ $\rightarrow {}^{7}\text{Li} + \alpha \qquad (6.4\%)$

Recoil fragments have ~2 MeV kinetic energy, quenched to 50-65 keV_{ee}

R Detecting the recoil particles eliminates gamma-propagation

Boron Loaded Scintillator

boron

- TMB loading investigated in the context of BOREX (and, for small detectors, elsewhere)
 - After distillation, TMB radiopurity and optical transmission as good or better than PC
 - A Light output of 6000 photons/ MeV achieved at 80% v/v TMB
 TMB

Proposal for a real time detector for low energy solar neutrinos

VOLUME 1 August 1991

Efficiency Studies

- Study veto efficiency using Geant4
 - A 1 m 50% (w/w) TMB scintillator around the DarkSide-50 dewar
 - Simplified cylindrical geometry
 - 10 cm diameter air-filled feed-through with dogleg penetrates the veto
 - Radiogenic neutron energy spectrum from SOURCES4A

Efficiency Studies

- A 1 m 50% (w/w) TMB scintillator around the DarkSide-50 dewar
- Simplified cylindrical geometry
- 10 cm diameter air-filled feed-through with dogleg penetrates the veto
- Radiogenic neutron energy spectrum from SOURCES4A

Component	Material	Mass (kg)
Active Volume	Liquid Argon	52.7
Inner vessel + photo-sensors	Fused Silica	25.4
Passive Buffer	Liquid Argon	74.1
Dewar + Internal Mechanics	Titanium	78.6
Neutron Veto	Boron-Loaded Scintillator	11,500

- ~20% of the neutrons were captured by inner vessel components
 - Detected in the veto either through proton recoils or gamma rays from the capture
 - To have high veto efficiency avoid gamma shielding around the inner detector

The distribution of veto times is lengthened by the presence of the inner detector

	Time Required (μs)	
Detection Efficiency	Inner Det.	No Inner Det.
70%	0.08	0.08
90%	0.37	0.1
95%	2.3	1.7
98%	5.5	3.8
99%	9.3	5.4
99.5%	21.5	7.0
99.8%	57.7	10.9

- Veto efficiency is degraded (and the timing further worsened) by hydrogenous material in the inner detector
 - Changing the fused silica
 vessel to acrylic reduced the
 veto efficiency to ~98%
 - The increase in veto efficiency from removing neutron shielding more than offsets the increase in neutron rate

Component	Material	Mass (kg)
Active Volume	Liquid Argon	52.7
Inner vessel + photo-sensors	Fused Silica	25.4
Passive Buffer	Liquid Argon	74.1
Dewar + Internal Mechanics	Titanium	78.6
Neutron Veto	Boron-Loaded Scintillator	11,500

Cosmogenic Neutrons

- Simulate external cosmogenic neutrons individually, using the energy spectrum from Mei & Hime (PRD 73, 053004, 2006)
 - Should underestimate veto efficiency
- With 1 m scintillator, recoil backgrounds from external cosmogenic neutrons are reduced by a factor of 40
- Internal cosmogenics are tiny due to very high efficiency of detecting primary muon

Thickness of Veto (m)	Interaction Rate in DarkSide50 (after veto)
0	1.0
1	0.027
2	0.0024
3	0.0005

Is a 40 keV_{ee} Veto Threshold Achievable?

Assume 80 8" PMTs in veto

- ↔ With 1 kHz dark rate, a 3 hit threshold gives a reasonable random rate
- - R 6000 photons/MeV

 - ∞ 95% reflection from walls/surfaces
 - ∞ 5m attenuation length
 - ∞ 2m scattering length

 keV_{ee} seems to be a feasible threshold!

Deadtime from Veto Backgrounds

Real Estimate background rates (primarily γ 's) in the veto for a 'typical' underground lab

Background Source	Veto Rate (Hz)
Inner Detector	<1
Scintillator Background	<1
PMTs	200
External Backgrounds with 25 cm steel	150
Steel Backgrounds	65
Random Veto Triggers (1 kHz dark rate)	80
Total Veto Rate	495

≪ 500 Hz corresponds to ~3% deadtime with a 60 μ s
 trigger window

Conclusions

Simulations suggest that very high efficiency for both radiogenic and cosmogenic neutrons are realizable using boron loaded liquid scintillators

R 1 m veto gives >99.5% and >95% efficiency,
 respectively

Acceptable veto light outputs and backgrounds rates seem practically realizable

R Simulations are nice but...

CR DarkSide-50 will deploy a scintillator veto and test its performance

DEPLETED ARGON FROM UNDERGROUND

Gas extraction

Fermilab

Chromatographic Gas Separation

- Underground Argon is not exposed to cosmic rays and is depleted in ³⁹Ar
 - (factor of 25 lower than atmospheric Ar)
- CO₂ well in southwestern Colorado identified with 600 ppm of Argon
- CO₂, O₂, H₂O and CH₄ can be trapped into zeolite (1st Stage)
- N₂ is partially trapped due to the high He content (2nd Stage)
- Absorption is pressure dependent
 - Higher pressure = greater absorption
 - Lower pressure = lower absorption

Vacuum-Pressure swing absorption unit in Colorado

- Gas from well
 - 96% CO₂
 - 2.4% N₂
 - 5,700 ppm CH₄
 - 4,300 ppm He
 - 2,100 ppm Other hydrocarbons
 - 1,000 ppm H₂O
 - 600 ppm Ar
 - Below sensitivity O₂
- Output gas:
 - 70% N₂, 27.5% He, and 2.5% Ar
- 52 higher pressure cylinders collected

26 kg of Depleted Argon

Waste gas (He and N₂)

Lower boiling point

gas preferentially

moves up column

Inject liquefied

Ar/N₂into column

Higher boiling point liquid preferentially

moves down column

Product gas (pure Argon)

Continuous Distillation Gas Separation

- Continuous boiling of liquid and recondensing of gas allow efficient continuous separation of liquids with different boiling points
- Boiling and recondensing occur in the column on custom made packing material
- Our column:

Temperature gradient

Packed column

- Packed column
- Diameter~ 2 cm
- Length ~ 320 cm
- Equivalent to 40 theoretical stages
- Expected performance:
- Purity 99.9999% pure Argon
- Production rate 5kg/day

Cryogenic Distillation Column at Fermilab

Column packing material

Does It Have to be Boron?

In our simulations, loading with 0.6% (w/w) Gd gave similar performance

Multiple gammas helps to mitigate the gamma propagation effect

Active vs. Passive Shielding of Cosmogenics

Active scintillator shield is about 4 times as effective as the same thickness of "passive" water
 Factor of 2 from detecting recoil neutron
 Factor of 2 from "mean free path" rather than "attenuation length"

Neutron Energy (MeV)	Mean Free Path (cm)	Most Distant Recoil (cm)
10	11	28
20	14	33
50	30	63
100	47	103
200	71	170

 Veto performance seems to be surprisingly independent of energy deposition in the active volume

